This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346104 #17 Jul 12 2021 18:00:36 %S A346104 1,-1,-1,-1,-1,0,-1,-5,-11,0,-1,1,-1,0,-4,-1,-1,1,-1,1,-4,0,-1,-8,-49, %T A346104 0,7,1,-1,-48,-1,25,-4,0,-124,12,-1,0,-4,0,-1,-10,-1,1,-13,0,-1,41, %U A346104 -1485,1,-4,1,-1,22,-92,10,-4,0,-1,76,-1,0,-39,23,-262,2,-1,1,-4,134,-1,-138,-1,0,-1033,1,-240,2,-1,11,-201,0,-1,6 %N A346104 Dirichlet inverse of A342920. %C A346104 The lowermost scatter plot gives an appearance of an elliptic galaxy seen from its side. %H A346104 Antti Karttunen, <a href="/A346104/b346104.txt">Table of n, a(n) for n = 1..10000</a> %H A346104 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A346104 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %o A346104 (PARI) %o A346104 up_to = 2310; %o A346104 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v (correctly!) %o A346104 A034386(n) = prod(i=1, primepi(n), prime(i)); %o A346104 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951 %o A346104 A342002(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= p^(e>0); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); }; %o A346104 A342920(n) = A342002(A108951(n)); %o A346104 v346104 = DirInverseCorrect(vector(up_to,n,A342920(n))); %o A346104 A346104(n) = v346104[n]; %Y A346104 Cf. A108951, A324886, A342001, A342002, A342920, A346103. %Y A346104 Cf. also A342417. %K A346104 sign,look %O A346104 1,8 %A A346104 _Antti Karttunen_, Jul 09 2021