This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346106 #7 Jul 08 2021 14:22:41 %S A346106 2,6,30,36,210,900,2310,30,210,44100,30030,810000,510510,5336100, %T A346106 85766121000000,900,9699690,44100,223092870,1944810000, %U A346106 151939915084881000000,901800900,6469693230,189000,28473963210000,260620460100,69300,28473963210000,200560490130,4492511100000,7420738134810,1260,733384949590939374729000000 %N A346106 a(n) = A108951(A346096(n)), where A346096(n) gives the numerator of the primorial deflation of A276086(A108951(n)). %H A346106 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A346106 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A346106 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A346106 a(n) = A108951(A346096(n)) = A108951(A319626(A324886(n))). %F A346106 a(n) = A324886(n) * A346107(n). %o A346106 (PARI) %o A346106 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; %o A346106 A319626(n) = (n / gcd(n, A064989(n))); %o A346106 A346096(n) = A319626(A324886(n)); %o A346106 A346106(n) = A108951(A346096(n)); \\ Rest of program in A324886. %Y A346106 Cf. A064989, A108951, A319626, A324886, A346096, A346107, A346108. %K A346106 nonn %O A346106 1,1 %A A346106 _Antti Karttunen_, Jul 08 2021