This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346109 #8 Jul 08 2021 14:23:00 %S A346109 0,1,3,2,9,6,39,1,3,18,249,12,2559,78,54,2,32589,6,543099,36,234,498, %T A346109 10242789,9,96,5118,42,156,233335659,45,6703028889,10,1494,65178,312, %U A346109 12,207263519019,1086198,15354,9,7628001653829,39,311878265181039,996,165,20485578,13394639596851069,21,1284,192,195534,10236,628284422185342479 %N A346109 a(n) = A276085(A108951(A346097(n))), where A346097(n) gives the denominator of the primorial deflation of A276086(A108951(n)). %H A346109 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A346109 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A346109 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A346109 a(n) = A346105(A346097(n)) = A276085(A346107(n)) = A276085(A108951(A346097(n))). %F A346109 a(n) = A346108(n) - A108951(n). %o A346109 (PARI) %o A346109 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; %o A346109 A319627(n) = (A064989(n) / gcd(n, A064989(n))); %o A346109 A346097(n) = A319627(A324886(n)); %o A346109 A346107(n) = A108951(A346097(n)); %o A346109 A002110(n) = prod(i=1,n,prime(i)); %o A346109 A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); }; %o A346109 A346109(n) = A276085(A346107(n)); \\ Rest of program given in A324886. %Y A346109 Cf. A002110, A064989, A108951, A276085, A324886, A319627, A346097, A346105, A346107, A346108. %K A346109 nonn %O A346109 1,3 %A A346109 _Antti Karttunen_, Jul 08 2021