This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346112 #48 Jul 29 2023 03:22:07 %S A346112 6,4,6,3,6,4,6,5,6,3,6,4,6,4,6,3,6,4 %N A346112 Size of the smallest regular polygon chain for a regular polygon with n sides. %C A346112 Each polygon in a polygon chain shares one edge with both its predecessor and successor polygon. The polygon chain forms a connected cycle. %H A346112 Stuart Anderson, <a href="http://www.squaring.net/polygons/polygon-chains.png"> Smallest regular polygon chains for n= 3 to 16</a> %H A346112 Dan McKinnon, <a href="http://www.mathrecreation.com/2015/07/regular-polygons-in-rings.html">Regular polygons, in rings</a> %F A346112 Empirical observations for n >= 3: %F A346112 a(n) = 3 if n == 0 (mod 6), %F A346112 4 if n == 4 or 8 (mod 12), %F A346112 5 if n = 10, %F A346112 4 if n = 14, %F A346112 6 otherwise. %e A346112 For n = 6, 3 hexagons can form a ring. See the first link for this and further images. %o A346112 (C++) %o A346112 #include <iostream> %o A346112 using namespace std; %o A346112 int a(int n); %o A346112 int main() { %o A346112 int t = 30; //change to extend the number of terms %o A346112 for (int n = 3; n < t; n++){ %o A346112 cout<< "n= "<<n<<" a(n)= "<<a(n)<<endl; %o A346112 } %o A346112 return 0; %o A346112 } %o A346112 int a(int n) { %o A346112 int s =0; %o A346112 if (n%6 == 0) { %o A346112 s = 3; %o A346112 } else if (n == 10) { %o A346112 s = 5; %o A346112 } else if (n == 14) { %o A346112 s = 4; %o A346112 } else if (n%4 == 0) { %o A346112 s = 4; %o A346112 } else { %o A346112 s = 6; %o A346112 } %o A346112 return s; %o A346112 } %K A346112 nonn,more,hear %O A346112 3,1 %A A346112 _Stuart E Anderson_, Jul 05 2021