This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346113 #38 Jul 07 2021 07:18:05 %S A346113 1,9077,10523,10838,30182,58529,73273,77879,83893,244022,303253, %T A346113 303449,304853,329893,332249,334001,334417,335939,336083,346741, %U A346113 374617,391187,504199,512695,516982,595274,680354,687142,758077,780391,792214,854669,946217,948539,995761,1008487,1377067,1389341 %N A346113 Base-10 numbers k whose number of divisors equals the number of divisors in R(k), where k is written in all bases from base-2 to base-10 and R(k), the digit reversal of k, is read as a number in the same base. %C A346113 There are 633 terms below 50 million and 1253 terms below 100 million. All of those have tau(k), the number of divisors of k, equal to 1, 2, 4, 8 or 16. The first term where tau(k) = 2 is n = 93836531, a prime, which is also the first term of A136634. All terms in A136634 will appear in this sequence, as will all terms in A228768(n) for n>=10. The first term with tau(k) = 4 is 9077, the first with tau(k) = 8 is 595274, and the first with tau(k) = 16 is 5170182. It is possible tau(k) must equal 2^i, with i>=0, although this is unknown. %C A346113 All known terms are squarefree. - _Michel Marcus_, Jul 07 2021 %H A346113 Scott R. Shannon, <a href="/A346113/b346113.txt">Table of n, a(n) for n = 1..1253</a> %e A346113 9077 is a term as the number of divisors of 9077 = tau(9077) = 4, and this equals the number of divisors of R(9077) when written and then read as a base-j number, with 2 <= j <= 10. See the table below for k = 9077. %e A346113 . %e A346113 base | k_base | R(k_base) | R(k_base)_10 | tau(R(k_base)_10) %e A346113 ---------------------------------------------------------------------------------- %e A346113 2 | 10001101110101 | 10101110110001 | 11185 | 4 %e A346113 3 | 110110012 | 210011011 | 15421 | 4 %e A346113 4 | 2031311 | 1131302 | 6002 | 4 %e A346113 5 | 242302 | 203242 | 6697 | 4 %e A346113 6 | 110005 | 500011 | 38887 | 4 %e A346113 7 | 35315 | 51353 | 12533 | 4 %e A346113 8 | 21565 | 56512 | 23882 | 4 %e A346113 9 | 13405 | 50431 | 33157 | 4 %e A346113 10 | 9077 | 7709 | 7709 | 4 %t A346113 Select[Range@100000,Length@Union@DivisorSigma[0,Join[{s=#},FromDigits[Reverse@IntegerDigits[s,#],#]&/@Range[2,10]]]==1&] (* _Giorgos Kalogeropoulos_, Jul 06 2021 *) %o A346113 (PARI) isok(k) = {my(t= numdiv(k)); for (b=2, 10, my(d=digits(k, b)); if (numdiv(fromdigits(Vecrev(d), b)) != t, return (0));); return(1);} \\ _Michel Marcus_, Jul 06 2021 %Y A346113 Cf. A000005, A004086. %Y A346113 Cf. A030102, A030103, A030104, A030105, A030106, A030107, A030108. %Y A346113 Cf. A136634 (prime terms), A228768. %Y A346113 Subsequence of A062895. %K A346113 nonn,base %O A346113 1,2 %A A346113 _Scott R. Shannon_, Jul 05 2021