cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346118 a(1) = 1; a(n+1) = 1 + Sum_{d|n} mu(n/d) * a(d).

This page as a plain text file.
%I A346118 #6 Jul 05 2021 15:40:15
%S A346118 1,2,2,2,1,1,-1,-1,-2,-3,-4,-4,-4,-4,-3,-4,-2,-2,2,2,6,7,11,11,19,19,
%T A346118 23,26,31,31,41,41,46,50,52,54,62,62,60,64,66,66,66,66,60,68,57,57,50,
%U A346118 52,38,40,22,22,0,5,-17,-19,-50,-50,-80,-80,-121,-122,-162,-157,-211,-211,-260,-271
%N A346118 a(1) = 1; a(n+1) = 1 + Sum_{d|n} mu(n/d) * a(d).
%F A346118 G.f. A(x) satisfies: A(x) = x * (1 / (1 - x) + Sum_{k>=1} mu(k) * A(x^k)).
%t A346118 a[1] = 1; a[n_] := a[n] = 1 + Sum[MoebiusMu[(n - 1)/d] a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 70}]
%t A346118 nmax = 70; A[_] = 0; Do[A[x_] = x (1/(1 - x) + Sum[MoebiusMu[k] A[x^k], {k, 1, nmax}]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
%Y A346118 Cf. A007554, A008683, A067824, A068336, A317581.
%K A346118 sign
%O A346118 1,2
%A A346118 _Ilya Gutkovskiy_, Jul 05 2021