This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346122 #16 Jul 08 2021 00:47:31 %S A346122 3,2,12,4,25,54,14,48,45,30,55,96,117,98,135,48,34,54,152,80,126,44, %T A346122 138,96,75,78,216,84,58,210,279,160,0,68,280,288,148,38,351,280,41, %U A346122 252,387,132,405,414,141,336,245,50,0,260,424,108,0,504,399,232,531 %N A346122 n times the n-th digit of the decimal expansion of Pi. %H A346122 <a href="/index/Ph#Pi314">Index entries for sequences related to the number Pi</a> %e A346122 The first digit of the decimal expansion of Pi is 3, so a(1) = 1*3 = 3. %e A346122 The second digit of the decimal expansion of Pi is 1, so a(2) = 2*1 = 2. %e A346122 The third digit of the decimal expansion of Pi is 4, so a(3) = 3*4 = 12. %t A346122 Module[{nn=120,pid},pid=RealDigits[Pi,10,nn][[1]];Table[n pid[[n]],{n,nn}]] %o A346122 (Python) %o A346122 from sympy import S %o A346122 def aupton(terms): %o A346122 digits_of_pi = "0" + str(S.Pi.n(terms+1)).replace('.', '') %o A346122 return [n*int(digits_of_pi[n]) for n in range(1, terms+1)] %o A346122 print(aupton(59)) # _Michael S. Branicky_, Jul 08 2021 %Y A346122 Cf. A000796, A014976 (zeros), A053745 (fixed points). %Y A346122 Cf. A053746, A053747, A053748, A053749, A053750, A053751, A053752, A053753. %K A346122 base,nonn %O A346122 1,1 %A A346122 _Harvey P. Dale_, Jul 05 2021