cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346123 Numbers m such that no self-avoiding walk of length m + 1 on the honeycomb net fits into the smallest circle that can enclose a walk of length m.

This page as a plain text file.
%I A346123 #16 Aug 08 2021 01:38:22
%S A346123 1,2,6,7,10,12,13,14,15,16,23,24,25,27,28,30,33,36,37,38,42,43,46,53,
%T A346123 54,55,56,58,59,62
%N A346123 Numbers m such that no self-avoiding walk of length m + 1 on the honeycomb net fits into the smallest circle that can enclose a walk of length m.
%C A346123 The segments of the walk can make relative turns of +- 60 degrees. The walks may be open or closed.
%H A346123 Hugo Pfoertner, <a href="http://www.randomwalk.de/sequences/a346123.htm">Examples of paths of maximum length</a>.
%F A346123 a(n+1) >= a(n) + 1 for n > 1; a(1) = 1.
%e A346123 Illustration of initial terms:
%e A346123                                %%% %%% %%%
%e A346123                            %                %
%e A346123                          %                    %
%e A346123       %  %              %                     /%
%e A346123    %        %          %      a(2) = 2       /  %
%e A346123   %__________%        %                     /    %
%e A346123   %   L = 1  %       %                     /      %
%e A346123    %  D = 1 %        %   L = 2, D = 1.732 /       %
%e A346123       %  %           %                   /        %
%e A346123                       %                 / Pi/3   %
%e A346123     a(1) = 1           %-------------- .  .  . .%
%e A346123                         %                      %
%e A346123                           %                  %
%e A346123                               %%% %%% %%%
%e A346123 .
%e A346123            %%% %%%% %%%                         %%% %%%% %%%
%e A346123         %                %                   %                %
%e A346123       %                    %               %                  \ %
%e A346123      %                      %             %                    \ %
%e A346123     %                        %           %                      \ %
%e A346123    %                          %         %                        \ %
%e A346123   %                            %       %                          \ %
%e A346123   %.      L = 3, D = 2.00     .%       %.      L = 4, D = 2.00     .%
%e A346123   % \                        / %       % \                        / %
%e A346123    % \                      / %         % \                      / %
%e A346123     % \                    / %           % \                    / %
%e A346123      % \                  / %             % \                  / %
%e A346123        % ---------------- %                 % ---------------- %
%e A346123            %%% %%% %%%                          %%% %%% %%%
%e A346123 .
%e A346123             %%% %%% %%%                          %%% %%% %%%
%e A346123         % ______________ %                   % ______________ %
%e A346123       %                  \ %               % /                \ %
%e A346123      %                    \ %             % /                  \ %
%e A346123     %                      \ %           % /                    \ %
%e A346123    %                        \ %         % /       a(3) = 6       \ %
%e A346123   %                          \ %       % /                        \ %
%e A346123   %.      L = 5, D = 2.00     .%       %.      L = 6, D = 2.00     .%
%e A346123   % \                        / %       % \                        / %
%e A346123    % \                      / %         % \                      / %
%e A346123     % \                    / %           % \                    / %
%e A346123      % \                  / %             % \                  / %
%e A346123        % ---------------- %                 % ---------------- %
%e A346123            %%% %%%% %%%                         %%% %%%% %%%
%e A346123 .
%e A346123 The path of minimum diameter of length 7 requires an enclosing circle of D = 3.055, which is greater than the previous minimum diameter of D = 2.00 corresponding to a(3) = 6. No path of length 8 exists that fits into a circle of D = 3.055, thus a(4) = 7.
%e A346123 See link for illustrations of terms corresponding to diameters D <= 9.85.
%Y A346123 Cf. A122223, A127399, A127400, A127401, A258206, A266925.
%Y A346123 Cf. A346124-A346132 similar to this sequence with other sets of turning angles.
%K A346123 nonn,more
%O A346123 1,2
%A A346123 _Hugo Pfoertner_, Jul 05 2021