A346133 Numbers N = A * B such that N (reversed digits) = A (reversed digits) * B (reversed digits). A single-digit number is its own reversal and neither A nor B has a leading zero. No pair (A, B) has both A and B palindromic or simple-digit. The reversed products are not included in the sequence.
24, 26, 28, 36, 39, 46, 48, 68, 69, 132, 143, 144, 154, 156, 165, 168, 169, 176, 187, 198, 204, 206, 208, 224, 226, 228, 244, 246, 248, 252, 253, 264, 266, 268, 273, 275, 276, 284, 286, 288, 294, 297, 299, 306, 309, 336, 339, 366, 369, 374, 384, 385, 396, 399
Offset: 1
Examples
a(1) = 24 = 2 * 12 and 2 * 21 = 42 (which is 24 reversed); a(2) = 26 = 2 * 13 and 2 * 31 = 62 (which is 26 reversed); a(3) = 28 = 2 * 14 and 2 * 41 = 82 (which is 28 reversed); a(4) = 36 = 3 * 12 and 3 * 21 = 63 (which is 36 reversed); etc.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A066531.
Programs
-
Mathematica
q[n_] := IntegerReverse[n] >= n && AnyTrue[Rest @ Take[(d = Divisors[n]), Ceiling[Length[d]/2]], (# > 9 || n/# > 9) && !Divisible[#, 10] && !Divisible[n/#, 10] && (!PalindromeQ[#] || !PalindromeQ[n/#]) && IntegerReverse[#] * IntegerReverse[n/#] == IntegerReverse[n] &]; Select[Range[2, 400], q] (* Amiram Eldar, Jul 07 2021 *)
-
Python
from sympy import divisors def rev(n): return int(str(n)[::-1]) def ok(n): divs = divisors(n) for a in divs[1:(len(divs)+1)//2]: b = n // a reva, revb, revn = rev(a), rev(b), rev(n) if revn < n or a%10 == 0 or b%10 == 0: continue if (reva != a or revb != b) and revn == reva * revb: return True return False print(list(filter(ok, range(400)))) # Michael S. Branicky, Jul 06 2021