cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346148 Square array read by descending antidiagonals: T(n, k) = mu^n(k) where mu^1(k) = mu(k) = A008683(k) and for each n >= 1, mu^(n+1)(k) is the Dirichlet convolution of mu(k) and mu^n(k).

This page as a plain text file.
%I A346148 #40 Sep 13 2021 11:38:05
%S A346148 1,-1,1,-1,-2,1,0,-2,-3,1,-1,1,-3,-4,1,1,-2,3,-4,-5,1,-1,4,-3,6,-5,-6,
%T A346148 1,0,-2,9,-4,10,-6,-7,1,0,0,-3,16,-5,15,-7,-8,1,1,1,-1,-4,25,-6,21,-8,
%U A346148 -9,1,-1,4,3,-4,-5,36,-7,28,-9,-10,1,0,-2,9,6,-10,-6
%N A346148 Square array read by descending antidiagonals: T(n, k) = mu^n(k) where mu^1(k) = mu(k) = A008683(k) and for each n >= 1, mu^(n+1)(k) is the Dirichlet convolution of mu(k) and mu^n(k).
%H A346148 Sebastian Karlsson, <a href="/A346148/b346148.txt">Antidiagonals n = 1..140, flattened</a>
%F A346148 If k = Product (p_j^m_j) then T(n, k) = Product (binomial(n, m_j)*(-1)^m_j).
%F A346148 Dirichlet g.f. of the n-th row: 1/zeta^n(s).
%F A346148 T(n, p) = -n.
%F A346148 T(n, n) = A341837(n).
%e A346148   n\k| 1    2    3    4    5    6    7    8    9   10   11    12 ...
%e A346148   ---+--------------------------------------------------------------
%e A346148    1 | 1   -1   -1    0   -1    1   -1    0    0    1   -1     0 ...
%e A346148    2 | 1   -2   -2    1   -2    4   -2    0    1    4   -2    -2 ...
%e A346148    3 | 1   -3   -3    3   -3    9   -3   -1    3    9   -3    -9 ...
%e A346148    4 | 1   -4   -4    6   -4   16   -4   -4    6   16   -4   -24 ...
%e A346148    5 | 1   -5   -5   10   -5   25   -5  -10   10   25   -5   -50 ...
%e A346148    6 | 1   -6   -6   15   -6   36   -6  -20   15   36   -6   -90 ...
%e A346148    7 | 1   -7   -7   21   -7   49   -7  -35   21   49   -7  -147 ...
%e A346148    8 | 1   -8   -8   28   -8   64   -8  -56   28   64   -8  -224 ...
%e A346148    9 | 1   -9   -9   36   -9   81   -9  -84   36   81   -9  -324 ...
%e A346148   10 | 1  -10  -10   45  -10  100  -10 -120   45  100  -10  -450 ...
%e A346148   11 | 1  -11  -11   55  -11  121  -11 -165   55  121  -11  -605 ...
%e A346148   12 | 1  -12  -12   66  -12  144  -12 -220   66  144  -12  -792 ...
%e A346148   13 | 1  -13  -13   78  -13  169  -13 -286   78  169  -13 -1014 ...
%e A346148   14 | 1  -14  -14   91  -14  196  -14 -364   91  196  -14 -1274 ...
%e A346148   15 | 1  -15  -15  105  -15  225  -15 -455  105  225  -15 -1575 ...
%e A346148   ...
%t A346148 T[n_, k_] := If[k == 1, 1, Product[(-1)^e Binomial[n, e], {e, FactorInteger[k][[All, 2]]}]];
%t A346148 Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Sep 13 2021 *)
%o A346148 (Python)
%o A346148 from sympy import binomial, primefactors as pf, multiplicity as mult
%o A346148 from math import prod
%o A346148 def T(n, k):
%o A346148     return prod((-1)**mult(p, k)*binomial(n, mult(p, k)) for p in pf(k))
%o A346148 (PARI) T(n, k) = my(f=factor(k)); for (k=1, #f~, f[k,1] = binomial(n, f[k,2])*(-1)^f[k,2]; f[k,2]=1); factorback(f); \\ _Michel Marcus_, Aug 21 2021
%Y A346148 Row n=1..10 give A008683, A007427, A007428, A247343, A341831, A341832, A341833, A341834, A341835, A341836.
%Y A346148 Main diagonal gives A341837.
%Y A346148 Cf. A077592, A163767,
%K A346148 sign,tabl
%O A346148 1,5
%A A346148 _Sebastian Karlsson_, Aug 20 2021