This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346154 #12 Jul 08 2021 14:21:44 %S A346154 3,7,13,0,31,43,0,73,739,0,14653,157,0,211,241,0,307,5851,0,421,463,0, %T A346154 1801152661487,601,0,457003,757,0,24419,27031,0,32801,1123,0, %U A346154 144884079282928466796911,1679653,0,1483,59359,0,1723,74131,0,85229,8303765671,0,4879729,110641,0,2551,2334165173090503 %N A346154 a(n) is the least prime of the form n^k+n+1 with k>1, or 0 if there is no such prime. %C A346154 a(n) = 0 if n == 1 (mod 3) and n > 1. %C A346154 Conjecture: a(n) > 0 otherwise. %H A346154 Robert Israel, <a href="/A346154/b346154.txt">Table of n, a(n) for n = 1..67</a> %F A346154 a(n) = n^A346149(n) + n + 1 if A346149(n) > 0. %e A346154 a(9) = 739 because 9^3 + 9 + 1 = 739 is prime while 9^2 + 9 + 1 is not. %p A346154 f:= proc(n) local i; %p A346154 if n mod 3 = 1 then return 0 fi; %p A346154 for i from 2 do if isprime(n^i+n+1) then return n^i+n+1 fi od: %p A346154 end proc: %p A346154 f(1):= 3: %p A346154 map(f, [$1..100]); %o A346154 (Python) %o A346154 from sympy import isprime %o A346154 def a(n): %o A346154 if n > 1 and n%3 == 1: return 0 %o A346154 k = 2 %o A346154 while not isprime(n**k + n + 1): k += 1 %o A346154 return n**k + n + 1 %o A346154 print([a(n) for n in range(1, 52)]) # _Michael S. Branicky_, Jul 07 2021 %Y A346154 Cf. A346149. %K A346154 nonn %O A346154 1,1 %A A346154 _J. M. Bergot_ and _Robert Israel_, Jul 07 2021