A346156 Primes of the form x^k+x+1 where k >= 2 and x >= 1.
3, 7, 11, 13, 19, 31, 43, 67, 73, 131, 157, 211, 223, 241, 307, 421, 463, 521, 601, 631, 733, 739, 757, 1123, 1303, 1483, 1723, 1741, 2551, 2971, 3307, 3391, 3541, 3907, 4099, 4423, 4831, 4931, 5113, 5701, 5851, 6007, 6163, 6481, 6571, 8011, 8191, 9283, 9901, 10303, 11131, 12211, 12433, 13807
Offset: 1
Keywords
Examples
a(3) = 11 is a term because 11 = 2^3+2+1 and is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^8: # for terms <= N S:= {3}: for k from 2 to ilog2(N-1) do S:= S union select(t -> t<= N and isprime(t),{seq(x^k+x+1,x=2..floor(N^(1/k)))}): od: sort(convert(S,list));
-
Python
from sympy import isprime def aupto(lim): xkx = set(x**k + x + 1 for k in range(2, lim.bit_length()) for x in range(int(lim**(1/k))+2)) return sorted(filter(isprime, filter(lambda t: t<=lim, xkx))) print(aupto(14000)) # Michael S. Branicky, Jul 07 2021
Comments