cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346159 Number of n-dimensional representations of the group SU(3).

This page as a plain text file.
%I A346159 #7 Jul 09 2021 22:18:57
%S A346159 1,1,1,3,3,3,8,8,9,17,19,21,35,39,44,68,79,87,127,145,162,228,261,291,
%T A346159 395,451,506,665,760,850,1096,1254,1400,1765,2016,2249,2800,3188,3556,
%U A346159 4356,4953,5522,6688,7581,8447,10123,11464,12747,15141,17094,18997,22395
%N A346159 Number of n-dimensional representations of the group SU(3).
%H A346159 Kathrin Bringmann and Johann Franke, <a href="https://arxiv.org/abs/2107.03261">An asymptotic formula for the number of n-dimensional representations of SU(3)</a>, arXiv:2107.03261 [math.RT], 2021.
%H A346159 Dan Romik, <a href="https://arxiv.org/abs/1503.03776">On the number of n-dimensional representations of SU(3), the Bernoulli numbers, and the Witten zeta function</a>, arXiv:1503.03776 [math.NT], 2015-2016.
%F A346159 G.f.: Product_{j,k>=1} 1/(1-x^(j*k*(j+k)/2)).
%o A346159 (PARI) fij(lim) = my(imax = ceil((sqrt(8*lim+1)-1)/2), list=List()); for (i=1, imax, for (j=1, imax, if ((p=i*j*(i+j)/2) <= lim, listput(list, p)))); list;
%o A346159 lista(nn) = my(v=fij(nn), x='x+O('x^nn), w=Vec(prod(k=1, #v, 1/(1-x^v[k])))); vector(nn, k, w[k]);
%Y A346159 Cf. A107985 (as a rectangular array).
%K A346159 nonn
%O A346159 0,4
%A A346159 _Michel Marcus_, Jul 08 2021