This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346160 #55 Apr 05 2024 08:20:58 %S A346160 0,25,1041,15655,637854,2507860,35577568 %N A346160 a(n) is the smallest K such that the power partition function P_n(k) is log-concave for all k > K. %C A346160 The power partition function P_n(k) is a restriction on the partition function. P_n(k) equals the number of ways a positive integer k can be written as the sum of perfect n powers. DeSalvo and Pak showed that the partition function (P_1(k)) is log-concave for all k > 24. %D A346160 Stephen DeSalvo and Igor Pak, Log-concavity of the partition function, The Ramanujan Journal, 38 (2015), 61-73. %H A346160 Brennan Benfield and Arindam Roy, <a href="https://arxiv.org/abs/2404.03153">Log-concavity And The Multiplicative Properties of Restricted Partition Functions</a>, arXiv:2404.03153 [math.NT], 2024. %H A346160 Stephen DeSalvo and Igor Pak, <a href="https://arxiv.org/abs/1310.7982">Log-Concavity of the Partition Function</a>, arXiv:1310.7982 [math.CO], 2013-2014. %e A346160 For n=0, P_0(k)^2 >= P_0(k-1)*P_0(k+1) for all k > 0. %e A346160 For n=1, P_1(k)^2 >= P_1(k-1)*P_1(k+1) for all k > 24. %e A346160 For n=2, P_2(k)^2 >= P_2(k-1)*P_2(k+1) for all k > 1042. %e A346160 For n=3, P_3(k)^2 >= P_3(k-1)*P_3(k+1) for all k > 15656. %e A346160 No further terms are known. %o A346160 (SageMath) %o A346160 def power_partition_generating_series(s, n=20): %o A346160 R = ZZ['q'] %o A346160 ans = R.one() %o A346160 m = 1 %o A346160 while m**s < n: %o A346160 l = [0] * n %o A346160 l[0] = 1 %o A346160 for i in range(1, (n + m**s - 1) // m**s): %o A346160 l[i*m**s] = 1 %o A346160 ans = ans._mul_trunc_(R(l), n) %o A346160 m += 1 %o A346160 return ans %o A346160 %time %o A346160 seq = power_partition_generating_series(2, 15000).coefficients() %o A346160 last_neg = None %o A346160 for n in range(2, len(seq) - 1): %o A346160 d = seq[n]**2 / seq[n-1] / seq[n+1] %o A346160 if d < 1: %o A346160 last_neg = n %o A346160 print(last_neg) %o A346160 # _Vincent Delecroix_, Dec 28 2022 %Y A346160 Cf. A000041, A001156, A003108, A046042. %K A346160 nonn,more %O A346160 0,2 %A A346160 _Brennan G. Benfield_, Sep 28 2021 %E A346160 Data corrected by _Brennan G. Benfield_, Dec 28 2022