cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346161 Prime numbers p such that the number of iterations of map A039634 required for p to reach 2 sets a new record.

This page as a plain text file.
%I A346161 #28 Aug 22 2021 22:14:50
%S A346161 2,3,7,23,47,191,383,1439,2879,11519,23039,261071,1044287,2949119,
%T A346161 31426559,194224127,1069493759,8554807007,31337349119,68438456063,
%U A346161 136876912127,547507648511,8760122376191
%N A346161 Prime numbers p such that the number of iterations of map A039634 required for p to reach 2 sets a new record.
%C A346161 It seems that the record number of iterations for a(n) is n-1.
%C A346161 Alternatively, prime numbers p such that the number of odd primes encountered under iteration of A004526 sets a new record. - _Martin Ehrenstein_, Aug 16 2021
%e A346161 Terms in this sequence are indicated in square brackets in the tree below for primes up to 97. Note that a(n) is the smallest prime of depth n-1.
%e A346161                  1                 ___________[2]____________
%e A346161                  |                /        /   |   \    \    \
%e A346161          _______[3]__       ____ 5 _     17   19   37   67   73
%e A346161         /        |   \     /     |  \     |    |
%e A346161      _[7]_      13   97   11    41  43   71   79
%e A346161     /  |  \      |       /  \    |
%e A346161   29  31  61    53    [23]  89  83
%e A346161    |                    |
%e A346161   59                  [47]
%o A346161 (Python)
%o A346161 from sympy import nextprime, isprime
%o A346161 rec = -1; p1 = 1
%o A346161 while p1 < 1000000000:
%o A346161     p = nextprime(p1); m = p; ct = 0
%o A346161     while m > 2:
%o A346161         if isprime(m): ct += 1
%o A346161         m //= 2
%o A346161     if ct > rec: print(p); rec = ct
%o A346161     p1 = p
%Y A346161 Cf. A005384, A058000, A039634, A346063, A346163.
%K A346161 nonn,more
%O A346161 1,1
%A A346161 _Ya-Ping Lu_, Jul 08 2021
%E A346161 a(19)-a(23) from _Martin Ehrenstein_, Aug 22 2021