cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346182 a(n) = A346463(n) / radical(A346463(n)).

This page as a plain text file.
%I A346182 #5 Jul 20 2021 17:06:45
%S A346182 1,1,1,1,1,1,1,1,3,1,7,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,9,1,1,1,1,7,1,1,
%T A346182 1,3,1,1,1,1,1,1,1,1,3,1,1,1,1,5,1,1,7,9,1,1,1,1,1,1,1,1,3,1,1,1,1,17,
%U A346182 1,1,1,3,1,49,1,1,1,31,1,1,27,1,1,1,1
%N A346182 a(n) = A346463(n) / radical(A346463(n)).
%p A346182 with(NumberTheory): a := proc(n) local v, d; v := (4^n - 2)*(4^n - 1);
%p A346182 for d in Divisors(2*n) do if isprime(d+1) then v := v/(d+1) fi od;
%p A346182 v / Radical(v) end: seq(a(n), n = 1..85);
%t A346182 radical[n_] := Product[p, {p, FactorInteger[n][[All, 1]]}];
%t A346182 A346463[n_] := 6 QBinomial[2 n, 2, 2] / Denominator[BernoulliB[2 n]];
%t A346182 A346182[n_] := With[{r = A346463[n]}, r / radical[r]];
%t A346182 Table[A346182[n], {n, 1, 40}]
%Y A346182 Cf. A346463, A346464, A346465.
%K A346182 nonn
%O A346182 1,9
%A A346182 _Peter Luschny_, Jul 20 2021