cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346197 a(n) is the minimum number of pebbles such that any assignment of those pebbles on K_5 is a next-player winning game in the two-player impartial (n+1,n) pebbling game.

This page as a plain text file.
%I A346197 #21 Jun 28 2024 01:17:30
%S A346197 7,15,21,27,33,39,47,53,59,67,73,79,87,93,99,107,113,119,127,133,139
%N A346197 a(n) is the minimum number of pebbles such that any assignment of those pebbles on K_5 is a next-player winning game in the two-player impartial (n+1,n) pebbling game.
%C A346197 For n>0, an (n+1,n) pebbling move involves removing n+1 pebbles from a vertex in a simple graph and placing n pebbles on an adjacent vertex.
%C A346197 A two-player impartial (n+1,n) pebbling game involves two players alternating (n+1,n) pebbling moves. The first player unable to make a move loses.
%D A346197 E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays, Vol. 1, CRC Press, 2001.
%H A346197 Kayla Barker, Mia DeStefano, Eugene Fiorini, Michael Gohn, Joe Miller, Jacob Roeder, and Tony W. H. Wong, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL27/Wong/wong43.html">Generalized Impartial Two-player Pebbling Games on K_3 and C_4</a>, J. Int. Seq. (2024) Vol. 27, Issue 5, Art. No. 24.5.8. See p. 4.
%H A346197 Eugene Fiorini, Max Lind, Andrew Woldar, and Tony W. H. Wong, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Wong/wong31.html">Characterizing Winning Positions in the Impartial Two-Player Pebbling Game on Complete Graphs</a>, Journal of Integer Sequences, (2021) Vol. 24, Issue 6, Art. No. 21.6.4.
%e A346197 For n=1, a(1)=7 is the least number of pebbles for which every (2,1) game on K_5 is a next-player winning game regardless of assignment.
%t A346197 Do[remove = k + 1; add = k;
%t A346197 (*Given n and m, list all possible assignments.*)
%t A346197 alltuples[n_, m_] := IntegerPartitions[m + n, {n}] - 1;
%t A346197 (*Given an assignment, list all resultant assignments after one pebbling move; only work for n>=3.*)
%t A346197 pebblemoves[config_] :=  Block[{n, temp},
%t A346197     n = Length[config];
%t A346197     temp = Table[config, {i, n (n - 1)}] +
%t A346197         Permutations[Join[{-remove, add}, Table[0, {i, n - 2}]]];
%t A346197     temp = Select[temp, Min[#] >= 0 &];
%t A346197     temp = ReverseSort[DeleteDuplicates[ReverseSort /@ temp]]];
%t A346197 (*Given n and m, list all assignments that are P-games.*)
%t A346197 Plist = {};
%t A346197 plist[n_, m_] :=  Block[{index, tuples},
%t A346197     While[Length[Plist] < n, index = Length[Plist];
%t A346197         AppendTo[Plist, {{Join[{1}, Table[0,{i,index}]]}}]];
%t A346197     Do[AppendTo[Plist[[n]], {}]; tuples = alltuples[n, i];
%t A346197         Do[If[Not[IntersectingQ[pebblemoves[tuples[[j]]],
%t A346197                 If[i > (remove - add), Plist[[n, i - (remove - add)]], {}]]],
%t A346197             AppendTo[Plist[[n, i]], tuples[[j]]]], {j, Length[tuples]}],
%t A346197     {i, Length[Plist[[n]]] + 1, m}]; Plist[[n, m]]];
%t A346197 Do[m = 1; While[plist[n, m] != {}, m++]; Print[" k=", k, " m=", m], {n, 5, 5}],
%t A346197 {k, 1, 21}]
%Y A346197 Cf. A340631, A084964.
%K A346197 nonn,more
%O A346197 1,1
%A A346197 _Kayla Barker_, _Mia DeStefano_, _Eugene Fiorini_, _Michael Gohn_, _Joe Miller_, _Jacob Roeder_, _Wing Hong Tony Wong_, Jul 09 2021