This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346201 #21 Nov 15 2022 12:56:19 %S A346201 1,0,2,2,6,8,48,196,210,58,5824,23280,27020,8610,802,2887680,11550848, %T A346201 13756560,4757260,581250,20834,5821595648,23286380544,28097284992, %U A346201 10075582800,1369706604,67874562,1051586,47317927329792,189271709384704,229853403924480,83865929653632,11957394226896,668707460652,14779207170,102233986 %N A346201 Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(2) such that the sum of the dimensions of their eigenspaces taken over all eigenvalues is k, 0 <= k <= n, n >= 0. %H A346201 Kent E. Morrison, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. %e A346201 1; %e A346201 0, 2; %e A346201 2, 6, 8; %e A346201 48, 196, 210, 58; %e A346201 5824, 23280, 27020, 8610, 802; %e A346201 2887680, 11550848, 13756560, 4757260, 581250, 20834; %t A346201 nn = 8; q = 2; b[p_, i_] := Count[p, i];d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] := Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; A001037 = %t A346201 Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}];g[u_, v_] := %t A346201 Total[Map[v^Length[#] u^Total[#]/aut[1, #] &,Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]];Table[Take[(Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g[u, v] g[u, v] Product[Product[1/(1 - (u/q^r)^d), {r, 1, \[Infinity]}]^A001037[[d]], {d, 2, nn}], {u, 0, nn}], {u, v}])[[n]], %t A346201 n], {n, 1, nn}] // Grid %Y A346201 Cf. A002820 (column k=0), A132186 (main diagonal), A002416 (row sums). %K A346201 nonn,tabl %O A346201 0,3 %A A346201 _Geoffrey Critzer_, Jul 16 2021