This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346202 #35 Dec 21 2022 04:49:10 %S A346202 1,0,1,0,1,0,1,4,1,0,1,4,9,4,1,0,1,4,9,16,9,4,9,4,1,0,1,4,9,16,25,36, %T A346202 25,16,9,4,9,4,1,0,1,4,9,16,25,16,25,36,25,36,25,36,49,36,25,16,9,4,9, %U A346202 4,9,4,9,4,1,4,9,16,9,16,25,36,49,36,49,64,49 %N A346202 a(n) = L(n)^2, where L is Liouville's function. %C A346202 The Riemann Hypothesis is equivalent to the statement that, for every fixed eps > 0, lim_{n->oo} (L(n) / n^(eps + 1/2)) = 0. %D A346202 Peter Borwein, Stephen Choi, Brendan Rooney, and Andrea Weirathmueller, The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, 2007, page 6, Theorem 1.2. %F A346202 a(n) = Sum_{i=1..n} Sum_{j=1..n} A008836(i)*A008836(j). %F A346202 a(n) = A002819(n)^2. - _Ilya Gutkovskiy_, Jul 10 2021 %p A346202 L:= proc(n) option remember; `if`(n<1, 0, %p A346202 (-1)^numtheory[bigomega](n)+L(n-1)) %p A346202 end: %p A346202 a:= n-> L(n)^2: %p A346202 seq(a(n), n=1..77); # _Alois P. Heinz_, Jul 28 2021 %t A346202 Table[Sum[LiouvilleLambda[n], {n, 1, nn}]^2, {nn, 1, 77}] %o A346202 (PARI) a008836(n) = (-1)^bigomega(n) \\ after _Charles R Greathouse IV_ in A008836 %o A346202 a(n) = sum(i=1, n, sum(j=1, n, a008836(i)*a008836(j))) \\ _Felix Fröhlich_, Jul 10 2021 %o A346202 (Python) %o A346202 from functools import reduce %o A346202 from operator import ixor %o A346202 from sympy import factorint %o A346202 def A346202(n): return sum(-1 if reduce(ixor, factorint(i).values(),0)&1 else 1 for i in range(1,n+1))**2 # _Chai Wah Wu_, Dec 20 2022 %Y A346202 Cf. A002819, A008836, A028488 (positions of zeros). %K A346202 nonn %O A346202 1,8 %A A346202 _Mats Granvik_, Jul 10 2021