This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346203 #17 Jun 15 2022 10:49:14 %S A346203 3,0,1,3,10,7,2,9,9,8,4,18,17,11,15,16,14,18,24,16,11,4,9,5,21,13,13, %T A346203 13,9,21,3,5,10,14,12,13,26,24,12,17,18,15,12,26,16,22,10,16,12,11,13, %U A346203 7,13,20,17,19,11,20,15,18,11,14,21,13,10,24,20,14,21,8,9 %N A346203 a(n) is the smallest nonnegative number k such that the decimal expansion of the product of the first k primes contains the string n. %H A346203 Ilya Gutkovskiy, <a href="/A346203/a346203.jpg">Scatterplot of a(n) up to n=100000</a> %H A346203 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %e A346203 a(5) = 7 since 5 occurs in prime(7)# = 2 * 3 * 5 * 7 * 11 * 13 * 17 = 510510, but not in prime(0)#, prime(1)#, prime(2)#, ..., prime(6)#. %t A346203 primorial[n_] := Product[Prime[j], {j, 1, n}]; a[n_] := (k = 0; While[! MatchQ[IntegerDigits[primorial[k]], {___, Sequence @@ IntegerDigits[n], ___}], k++]; k); Table[a[n], {n, 0, 70}] %o A346203 (Python) %o A346203 from sympy import nextprime %o A346203 def A346203(n): %o A346203 m, k, p, s = 1, 0, 1, str(n) %o A346203 while s not in str(m): %o A346203 k += 1 %o A346203 p = nextprime(p) %o A346203 m *= p %o A346203 return k # _Chai Wah Wu_, Jul 12 2021 %o A346203 (PARI) a(n) = my(k=0, p=1, q=1, sn=Str(n)); while (#strsplit(Str(q), sn)==1, k++; p=nextprime(p+1); q*=p); k; \\ _Michel Marcus_, Jul 13 2021; corrected Jun 15 2022 %Y A346203 Cf. A002110, A030000, A062584, A082058, A346120. %K A346203 nonn,base %O A346203 0,1 %A A346203 _Ilya Gutkovskiy_, Jul 10 2021