This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346204 #47 Aug 07 2021 04:15:05 %S A346204 0,0,2,5,24,128,795,5686,46090,418519,4213098,46595650,561773033, %T A346204 7333741536,103065052300,1551392868821,24902155206164,424588270621876, %U A346204 7663358926666175,145967769353476594,2926073829112697318,61577929208485406331,1357369100658321844470,31276096500003460511422 %N A346204 a(n) is the number of permutations on [n] with at least one strong fixed point and at least one small descent. %C A346204 A small descent in a permutation p is a position i such that p(i)-p(i+1)=1. %C A346204 A strong fixed point is a fixed point (or splitter) p(k)=k such that p(i) < k for i < k and p(j) > k for j > k. %D A346204 E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways For Your Mathematical Plays, Vol. 1, CRC Press, 2001. %H A346204 M. Lind, E. Fiorini, A. Woldar, and W. H. T. Wong, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Wong/wong31.html">On Properties of Pebble Assignment Graphs</a>, Journal of Integer Sequences, 24(6), 2020. %F A346204 a(n) = A006932(n) - A346199(n). %e A346204 For n=4, the a(4)=5 permutations on [4] with strong fixed points and small descents: {(1*, 2*, [4, 3]), (1*, [3, 2], 4*), (1*, <4, 3, 2>), ([2, 1], 3*, 4*), (<3, 2, 1>, 4*)}. *strong fixed point, []small descent, <>consecutive small descents. %o A346204 (Python) %o A346204 import math %o A346204 bn = [1,1,1] %o A346204 wn = [0,0,0] %o A346204 kn = [1,1,1] %o A346204 def summation(n): %o A346204 final = bn[n] - bn[n-1] %o A346204 for k in range(4,n+1): %o A346204 final -= wn[k-1]*bn[n-k] %o A346204 return final %o A346204 def smallsum(n): %o A346204 final = bn[n-1] %o A346204 for k in range(4,n+1): %o A346204 final += wn[k-1]*bn[n-k] %o A346204 return final %o A346204 def derrangement(n): %o A346204 finalsum = 0 %o A346204 for i in range(n+1): %o A346204 if i%2 == 0: %o A346204 finalsum += math.factorial(n)*1//math.factorial(i) %o A346204 else: %o A346204 finalsum -= math.factorial(n)*1//math.factorial(i) %o A346204 if finalsum != 0: %o A346204 return finalsum %o A346204 else: %o A346204 return 1 %o A346204 def fixedpoint(n): %o A346204 finalsum = math.factorial(n-1) %o A346204 for i in range(2,n): %o A346204 finalsum += math.factorial(i-i)*math.factorial(n-i-1) %o A346204 print(math.factorial(i-i)*math.factorial(n-i-1)) %o A346204 return finalsum %o A346204 def no_cycles(n): %o A346204 goal = n %o A346204 cycles = [0, 1] %o A346204 current = 2 %o A346204 while current<= goal: %o A346204 new = 0 %o A346204 k = 1 %o A346204 while k<=current: %o A346204 new += (math.factorial(k-1)-cycles[k-1])*(math.factorial(current-k)) %o A346204 k+=1 %o A346204 cycles.append(new) %o A346204 current+=1 %o A346204 return cycles %o A346204 def total_func(n): %o A346204 for i in range(3,n+1): %o A346204 bn.append(derrangement(i+1)//(i)) %o A346204 kn.append(smallsum(i)) %o A346204 wn.append(summation(i)) %o A346204 an = no_cycles(n) %o A346204 tl = [int(an[i]-kn[i]) for i in range(n+1)] %o A346204 factorial = [math.factorial(x) for x in range(0,n+1)] %o A346204 print("A346189 :" + str(wn[1:])) %o A346204 print("A346198 :" + str([factorial[i]-wn[i]-tl[i]-kn[i] for i in range(n+1)][1:])) %o A346204 print("A346199 :" + str(kn[1:])) %o A346204 print("A346204 :" + str(tl[1:])) %o A346204 total_func(20) %Y A346204 Cf. A000255, A000166, A000153, A000261, A001909, A001910, A055790, A346189, A346198, A346199. %K A346204 nonn,more %O A346204 1,3 %A A346204 _Eugene Fiorini_, _Jared Glassband_, _Garrison Lee Koch_, _Sophia Lebiere_, _Xufei Liu_, _Evan Sabini_, _Nathan B. Shank_, _Andrew Woldar_, Jul 10 2021