This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346210 #13 Oct 18 2023 09:22:09 %S A346210 1,2,14,352,32512,11239424,14761852928,74524125036544, %T A346210 1459094811012235264,111539381955990155952128, %U A346210 33460660604316425324211470336,39542320578630779599776165929156608,184615341335916919478531491782548361576448 %N A346210 Number of n X n matrices over GF(2) whose characteristic polynomial is a product of (not necessarily distinct) linear factors, i.e., the characteristic polynomial has the form x^k(1+x)^(n-k) for some 0 <= k <= n. %H A346210 L. Kaylor and D. Offner, <a href="https://doi.org/10.2140/involve.2014.7.627">Counting matrices over a finite field with all eigenvalues in the field</a>, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 627-645. %F A346210 Sum_{n>=0} a(n)*x^n/A002884(n) = (Sum_{n>=0} A053763(n)x^n/A002884(n))^2 = (Product_{n>=1} 1/(1-x/2^n))^2. %e A346210 a(2) = 14 because there are 16 2 X 2 matrices over GF(2) and all except {{0,1},{1,1}} and {{1,1},{1,0}} have characteristic polynomials of the desired form. %t A346210 nn = 12; q = 2; Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[Product[1/(1 - u/q^r), {r, 1, \[Infinity]}]^2, {u, 0, nn}], u] %Y A346210 Cf. A002884, A053763. %K A346210 nonn %O A346210 0,2 %A A346210 _Geoffrey Critzer_, Jul 10 2021