A346213 Number of iterations of A000688 needed to reach 1 starting at n (n is counted).
1, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2
Offset: 1
Keywords
Examples
a(4) = 3 since the trajectory of n = 4, {n, A000688(n), A000688(A000688(n))} = {4, 2, 1}, has the length 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Paul Erdős and Aleksandar Ivić, On the iterates of the enumerating function of finite abelian groups, Bulletin Académie serbe des sciences et des arts, Classe des sciences mathématiques et naturelles, Sciences mathématiques, No. 17 (1989), pp. 13-22; alternative link.
Programs
-
Mathematica
a[n_] := -1 + Length @ FixedPointList[FiniteAbelianGroupCount, n]; Array[a, 100]
Formula
Sum_{k<=x} a(k) ~ c*x + O(x^(1/2 + eps)), where c > 1 is a constant (Erdős and Ivić, 1989).
Comments