This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346214 #31 Jun 11 2025 10:09:26 %S A346214 1,1,3,1,21,42,1,315,1260,2520,1,6975,104160,312480,624960,1,373023, %T A346214 23436000,104993280,314979840,629959680,1,32252031,9175162752, %U A346214 121912197120,426692689920,1280078069760,2560156139520,1,6619979775,9978120069120,421755245936640,1989607056998400,6963624699494400,20890874098483200,41781748196966400 %N A346214 Triangular array read by rows. T(n,k) is the number of nilpotent n X n matrices over GF(2) with index k, 1 <= k <= n, n >= 1. %C A346214 The index of a nilpotent matrix A is the smallest positive integer k such that A^k = 0. %C A346214 Define the co-index of an n X n matrix A to be n - index(A). Let X_n be the random variable that assigns to each nilpotent n X n matrix over GF(2) the value j in {0,1,...,n-1} of its co-index. Conjecture: lim_{n->inf} P(X_n = j) = Product_{i>=1}1-1/2^i * 2^((j-1)^2)/A002884(j). Moreover, for j < 2n, T(n,n-j) = A002884(n)/(A002884(j)*2^(n - (j-1)^2)). - _Geoffrey Critzer_, Jun 10 2025 %e A346214 1, %e A346214 1, 3, %e A346214 1, 21, 42, %e A346214 1, 315, 1260, 2520, %e A346214 1, 6975, 104160, 312480, 624960 %t A346214 nn = 8; q = 2; %t A346214 b[p_, i_] := Count[p, i]; %t A346214 d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; %t A346214 aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}]; %t A346214 l = Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]; %t A346214 \[Gamma][n_, q_] := Product[q^n - q^i, {i, 0, n - 1}]; %t A346214 g[u_, v_, deg_, partitions_] := Total[Map[v^If[# == {}, 0, Max[#]] u^(deg Total[#])/aut[deg, #] &, partitions]]; %t A346214 Map[Select[#, # > 0 &] &, Drop[Table[\[Gamma][n, q], {n, 0, nn}] CoefficientList[ Series[g[u, v, 1, l], {u, 0, nn}], {u, v}], 1]] // Grid %Y A346214 Cf. A083402 (main diagonal), A053763 (row sums), A002884, A048651. %K A346214 nonn,tabl %O A346214 1,3 %A A346214 _Geoffrey Critzer_, Jul 10 2021 %E A346214 More terms from _Geoffrey Critzer_, Jun 10 2025