This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346217 #17 Aug 05 2021 16:28:11 %S A346217 1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,111,122,124,126,142,144, %T A346217 155,162,168,186,221,222,244,248,261,263,284,288,324,326,333,342,346, %U A346217 362,364,366,442,444,488,555,621,623,648,663,666,684,728,742,777,812 %N A346217 Integers m, with k digits, such that Sum_{i=1..k} (m without its i-th digit)/(its i-th digit) is an integer. %H A346217 Michel Marcus, <a href="/A346217/b346217.txt">Table of n, a(n) for n = 1..5000</a> %H A346217 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_1045.htm">Puzzle 1045. One nice puzzle from Paolo Lava</a>, The Prime Puzzles and Problems Connection. %e A346217 124 gives 12/4 + 14/2 + 24/1 = 34, an integer, so 124 is a term. %e A346217 221 gives 21/2 + 21/2 + 22/1 = 43, an integer, so 221 is a term. %o A346217 (PARI) subs(d, j) = {my(x=""); for (k=1, #d, if (j != k, x = concat(x, d[k]));); eval(x);} %o A346217 isok(m) = {my(d=digits(m), res); if (vecmin(d), res = sum(j=1, #d, subs(d, j)/d[j]); (denominator(res)==1););} %o A346217 (Python) %o A346217 from fractions import Fraction %o A346217 def ok(n): %o A346217 s = str(n) %o A346217 if '0' in s: return False %o A346217 if len(s) == 1: return True %o A346217 return sum(Fraction(int(s[:i]+s[i+1:]), int(s[i])) for i in range(len(s))).denominator == 1 %o A346217 print(list(filter(ok, range(813)))) # _Michael S. Branicky_, Jul 11 2021 %Y A346217 Subsequence of A052382 (zeroless numbers). Supersequence of A346206. %K A346217 nonn,base %O A346217 1,2 %A A346217 _Michel Marcus_, Jul 11 2021