cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346219 Base-10 numbers k such that k can be written as k = A * B and R(k) = R(A) * R(B) in six or more bases, from base 2 to base 10, and where R(k), the digit reversal of k, is read as a number in the same base.

This page as a plain text file.
%I A346219 #39 Jun 22 2023 01:10:55
%S A346219 1122,17875,65331,367598,818545,1997905,43998955,100383283,112887775,
%T A346219 112977865,145683265,230034805,5231187650
%N A346219 Base-10 numbers k such that k can be written as k = A * B and R(k) = R(A) * R(B) in six or more bases, from base 2 to base 10, and where R(k), the digit reversal of k, is read as a number in the same base.
%C A346219 This is a variation of the sequence A346133. Similar rules are used to determine the allowed values of A and B - neither number can have a leading 0, and both cannot be palindromes. However the reverse of k may appear as in general any solutions for k and R(k) will occur in different bases.
%C A346219 This sequence lists those base-10 numbers that meet these criteria in six or more bases, from base 2 to base 10. Note that, although k must stay the same when written in the different bases, the values of A and B need not be the same. Only the product of the chosen two factors and their reverses must equal k and R(k) in the given bases. See the example below and the linked data file.
%C A346219 No numbers are currently known that have solutions in seven or more bases. Assuming a(13) exists it is greater than 10^9.
%H A346219 Scott R. Shannon, <a href="/A346219/a346219_1.txt">Factorizations of the twelve terms below 10^9</a>.
%e A346219 1122 is a term as k = A * B and R(k) = R(A) * R(B) has solutions in the six bases 4,5,7,8,9,10. See the table below for k = 1122.
%e A346219 .
%e A346219       base   | k_base | A_base * B_base | R(k_base) | R(A_base) * R(B_base)
%e A346219   =========================================================================
%e A346219        4     | 101202 |    101 * 1002   |  202101   |       101 * 2001
%e A346219   in base 10 |   1122 |     17 * 66     |    2193   |        17 * 129
%e A346219   ------------------------------------------------------------------------
%e A346219        5     |  13442 |      3 * 2444   |   24431   |         3 * 4442
%e A346219   in base 10 |   1122 |      3 * 374    |    1866   |         3 * 622
%e A346219   ------------------------------------------------------------------------
%e A346219        7     |   3162 |     31 * 102    |    2613   |        13 * 201
%e A346219   in base 10 |   1122 |     22 * 51     |     990   |        10 * 99
%e A346219   -------------------------------------------------------------------------
%e A346219        8     |   2142 |     21 * 102    |    2412   |        12 * 201
%e A346219   in base 10 |   1122 |     17 * 66     |    1290   |        10 * 129
%e A346219   -------------------------------------------------------------------------
%e A346219        9     |   1476 |     12 * 123    |    6741   |        21 * 321
%e A346219   in base 10 |   1122 |     11 * 102    |    4978   |        19 * 262
%e A346219   -------------------------------------------------------------------------
%e A346219       10     |   1122 |     11 * 102    |    2211   |        11 * 201
%e A346219 .
%e A346219 The bases used in the twelve terms below 10^9 are as follows:
%e A346219 .
%e A346219          k    |       bases
%e A346219   --------------------------------
%e A346219         1122  |  4, 5, 7, 8, 9, 10
%e A346219        17875  |  2, 3, 4, 6, 8, 10
%e A346219        65331  |  2, 4, 5, 6, 8, 10
%e A346219       367598  |  3, 4, 6, 8, 9, 10
%e A346219       818545  |  2, 3, 4, 6, 8,  9
%e A346219      1997905  |  2, 3, 4, 6, 8,  9
%e A346219     43998955  |  2, 3, 4, 8, 9, 10
%e A346219    100383283  |  2, 3, 4, 6, 9, 10
%e A346219    112887775  |  2, 3, 4, 8, 9, 10
%e A346219    112977865  |  2, 3, 4, 8, 9, 10
%e A346219    145683265  |  2, 3, 4, 6, 8,  9
%e A346219    230034805  |  2, 3, 4, 6, 8,  9
%e A346219 .
%Y A346219 Cf. A346133, A066531, A230594, A001055, A038548.
%K A346219 nonn,base,more
%O A346219 1,1
%A A346219 _Scott R. Shannon_, _Eric Angelini_ and _Carole Dubois_, Jul 11 2021
%E A346219 a(13) from _Michael S. Branicky_, Jun 21 2023