This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346243 #9 Aug 13 2021 22:48:25 %S A346243 2,0,0,1,0,6,0,1,9,2,0,-1,0,2,6,1,0,-15,0,9,6,2,0,1,1,2,-9,1,0,44,0,1, %T A346243 6,2,2,15,0,2,6,5,0,-4,0,1,69,2,0,1,1,57,6,1,0,45,2,1,6,2,0,-49,0,2, %U A346243 -3,1,2,-4,0,1,6,20,0,-3,0,2,171,1,2,-4,0,5,27,2,0,15,2,2,6,1,0,-235,2,1,6,2,2,1,0,13 %N A346243 Sum of A324198 and its Dirichlet inverse. %H A346243 Antti Karttunen, <a href="/A346243/b346243.txt">Table of n, a(n) for n = 1..16384</a> %H A346243 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A346243 a(n) = A324198(n) + A346242(n). %o A346243 (PARI) %o A346243 up_to = 65537; %o A346243 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v. %o A346243 A324198(n) = { my(m=1, p=2, orgn=n); while(n, m *= (p^min(n%p, valuation(orgn, p))); n = n\p; p = nextprime(1+p)); (m); }; %o A346243 v346242 = DirInverseCorrect(vector(up_to,n,A324198(n))); %o A346243 A346242(n) = v346242[n]; %o A346243 A346243(n) = (A324198(n)+A346242(n)); %Y A346243 Cf. A276086, A324198, A346242. %K A346243 sign,base %O A346243 1,1 %A A346243 _Antti Karttunen_, Jul 13 2021