cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346247 Sum of A344587 (the deficiency of prime shifted n) and its Dirichlet inverse.

This page as a plain text file.
%I A346247 #13 Jul 20 2021 10:46:09
%S A346247 2,0,0,4,0,16,0,12,16,24,0,16,0,40,48,37,0,28,0,28,80,48,0,36,36,64,
%T A346247 88,52,0,-48,0,114,96,72,120,54,0,88,128,68,0,-64,0,64,116,112,0,92,
%U A346247 100,68,144,88,0,124,144,132,176,120,0,-12,0,144,204,349,192,-72,0,100,224,-72,0,128,0,160,160,124,240,-88,0,182
%N A346247 Sum of A344587 (the deficiency of prime shifted n) and its Dirichlet inverse.
%H A346247 Antti Karttunen, <a href="/A346247/b346247.txt">Table of n, a(n) for n = 1..16383</a>
%H A346247 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A346247 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A346247 a(n) = A344587(n) + A346246(n).
%F A346247 a(n) = A323911(A003961(n)).
%o A346247 (PARI)
%o A346247 up_to = 16384;
%o A346247 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
%o A346247 A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
%o A346247 A344587(n) = { my(u=A003961(n)); (u+u - sigma(u)); };
%o A346247 v346246 = DirInverseCorrect(vector(up_to,n,A344587(n)));
%o A346247 A346246(n) = v346246[n];
%o A346247 A346247(n) = (A344587(n)+A346246(n));
%Y A346247 Cf. A000203, A003961, A323911, A344587, A346246.
%Y A346247 Cf. also A346250.
%K A346247 sign
%O A346247 1,1
%A A346247 _Antti Karttunen_, Jul 19 2021