This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346258 #18 Aug 25 2025 17:31:40 %S A346258 1,2,7,44,421,5366,84907,1601552,35052649,872931626,24368595631, %T A346258 753607111412,25572085243597,944609383245854,37731673388579731, %U A346258 1620520035001182296,74466516342569480017,3645540855448417250642,189415873005295070803159,10410429682102309433442236 %N A346258 E.g.f.: exp(x) / (1 - 3 * x)^(1/3). %C A346258 Binomial transform of A007559. %F A346258 a(n) = Sum_{k=0..n} binomial(n,k) * A007559(k). %F A346258 a(n) ~ n! * exp(1/3) * 3^n / (Gamma(1/3) * n^(2/3)). - _Vaclav Kotesovec_, Aug 14 2021 %F A346258 a(n+2) = (3*n+5)*a(n+1)-3*(n+1)*a(n). - _Tani Akinari_, Sep 08 2023 %p A346258 g:= proc(n) option remember; `if`(n<2, 1, (3*n-2)*g(n-1)) end: %p A346258 a:= n-> add(binomial(n, k)*g(k), k=0..n): %p A346258 seq(a(n), n=0..19); # _Alois P. Heinz_, Aug 10 2021 %t A346258 nmax = 19; CoefficientList[Series[Exp[x]/(1 - 3 x)^(1/3), {x, 0, nmax}], x] Range[0, nmax]! %t A346258 Table[Sum[Binomial[n, k] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 19}] %t A346258 Table[HypergeometricU[1/3, n + 4/3, 1/3]/3^(1/3), {n, 0, 19}] %t A346258 With[{nn=20},CoefficientList[Series[Exp[x]/CubeRoot[1-3x],{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Aug 25 2025 *) %o A346258 (Maxima) a[n]:=if n<2 then n+1 else (3*n-1)*a[n-1]+3*(1-n)*a[n-2]; %o A346258 makelist(a[n],n,0,50); /* _Tani Akinari_, Sep 08 2023 */ %Y A346258 Cf. A000522, A007559, A010845, A033030, A084262, A347012, A347013, A347014. %K A346258 nonn,changed %O A346258 0,2 %A A346258 _Ilya Gutkovskiy_, Aug 10 2021