cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346259 Numbers that are the sum of seven fifth powers in exactly ten ways.

This page as a plain text file.
%I A346259 #7 Jul 31 2021 19:11:40
%S A346259 134581976,189642309,219063107,235438301,252277376,275782407,
%T A346259 300919884,308188849,309631268,315635200,327287951,335530174,
%U A346259 342030094,358852218,379913293,384699424,387538625,391133568,395423876,405307926,421322507,423673757,425588250
%N A346259 Numbers that are the sum of seven fifth powers in exactly ten ways.
%C A346259 Differs from A345643 at term 7 because 281935070 = 17^5 + 17^5 + 18^5 + 21^5 + 23^5 + 26^5 + 48^5 = 7^5 + 17^5 + 20^5 + 23^5 + 24^5 + 32^5 + 47^5 = 7^5 + 13^5 + 13^5 + 26^5 + 30^5 + 36^5 + 45^5 = 1^5 + 13^5 + 21^5 + 21^5 + 33^5 + 37^5 + 44^5 = 6^5 + 7^5 + 13^5 + 31^5 + 34^5 + 36^5 + 43^5 = 4^5 + 8^5 + 16^5 + 29^5 + 31^5 + 41^5 + 41^5 = 6^5 + 8^5 + 12^5 + 28^5 + 37^5 + 38^5 + 41^5 = 3^5 + 6^5 + 15^5 + 32^5 + 35^5 + 38^5 + 41^5 = 7^5 + 24^5 + 25^5 + 32^5 + 34^5 + 37^5 + 41^5 = 13^5 + 20^5 + 21^5 + 34^5 + 35^5 + 36^5 + 41^5 = 8^5 + 24^5 + 26^5 + 31^5 + 31^5 + 40^5 + 40^5.
%H A346259 Sean A. Irvine, <a href="/A346259/b346259.txt">Table of n, a(n) for n = 1..4377</a>
%e A346259 134581976 is a term because 134581976 = 1^5 + 14^5 + 17^5 + 18^5 + 26^5 + 31^5 + 39^5 = 1^5 + 1^5 + 10^5 + 12^5 + 19^5 + 35^5 + 38^5 = 8^5 + 11^5 + 12^5 + 17^5 + 27^5 + 33^5 + 38^5 = 3^5 + 12^5 + 12^5 + 21^5 + 28^5 + 32^5 + 38^5 = 4^5 + 11^5 + 13^5 + 22^5 + 24^5 + 36^5 + 36^5 = 5^5 + 6^5 + 19^5 + 20^5 + 24^5 + 36^5 + 36^5 = 1^5 + 4^5 + 21^5 + 21^5 + 29^5 + 34^5 + 36^5 = 1^5 + 8^5 + 14^5 + 23^5 + 32^5 + 32^5 + 36^5 = 6^5 + 25^5 + 25^5 + 25^5 + 29^5 + 30^5 + 36^5 = 12^5 + 20^5 + 21^5 + 26^5 + 28^5 + 34^5 + 35^5.
%o A346259 (Python)
%o A346259 from itertools import combinations_with_replacement as cwr
%o A346259 from collections import defaultdict
%o A346259 keep = defaultdict(lambda: 0)
%o A346259 power_terms = [x**5 for x in range(1, 1000)]
%o A346259 for pos in cwr(power_terms, 7):
%o A346259     tot = sum(pos)
%o A346259     keep[tot] += 1
%o A346259     rets = sorted([k for k, v in keep.items() if v == 10])
%o A346259     for x in range(len(rets)):
%o A346259         print(rets[x])
%Y A346259 Cf. A345643, A345832, A346286, A346335, A346365.
%K A346259 nonn
%O A346259 1,1
%A A346259 _David Consiglio, Jr._, Jul 12 2021