This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346278 #9 Jul 31 2021 19:11:45 %S A346278 7,38,69,100,131,162,193,224,249,280,311,342,373,404,435,491,522,553, %T A346278 584,615,646,733,764,795,826,857,975,1006,1030,1037,1061,1068,1092, %U A346278 1123,1154,1185,1216,1217,1248,1272,1279,1303,1334,1365,1396,1427,1459,1490 %N A346278 Numbers that are the sum of seven fifth powers in exactly one way. %C A346278 Differs from A003352 at term 123 because 4099 = 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5. %H A346278 Sean A. Irvine, <a href="/A346278/b346278.txt">Table of n, a(n) for n = 1..10000</a> %e A346278 7 is a term because 7 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5. %o A346278 (Python) %o A346278 from itertools import combinations_with_replacement as cwr %o A346278 from collections import defaultdict %o A346278 keep = defaultdict(lambda: 0) %o A346278 power_terms = [x**5 for x in range(1, 1000)] %o A346278 for pos in cwr(power_terms, 7): %o A346278 tot = sum(pos) %o A346278 keep[tot] += 1 %o A346278 rets = sorted([k for k, v in keep.items() if v == 1]) %o A346278 for x in range(len(rets)): %o A346278 print(rets[x]) %Y A346278 Cf. A003352, A345823, A346279, A346326, A346356. %K A346278 nonn %O A346278 1,1 %A A346278 _David Consiglio, Jr._, Jul 13 2021