cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346278 Numbers that are the sum of seven fifth powers in exactly one way.

This page as a plain text file.
%I A346278 #9 Jul 31 2021 19:11:45
%S A346278 7,38,69,100,131,162,193,224,249,280,311,342,373,404,435,491,522,553,
%T A346278 584,615,646,733,764,795,826,857,975,1006,1030,1037,1061,1068,1092,
%U A346278 1123,1154,1185,1216,1217,1248,1272,1279,1303,1334,1365,1396,1427,1459,1490
%N A346278 Numbers that are the sum of seven fifth powers in exactly one way.
%C A346278 Differs from A003352 at term 123 because 4099 = 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
%H A346278 Sean A. Irvine, <a href="/A346278/b346278.txt">Table of n, a(n) for n = 1..10000</a>
%e A346278 7 is a term because 7 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
%o A346278 (Python)
%o A346278 from itertools import combinations_with_replacement as cwr
%o A346278 from collections import defaultdict
%o A346278 keep = defaultdict(lambda: 0)
%o A346278 power_terms = [x**5 for x in range(1, 1000)]
%o A346278 for pos in cwr(power_terms, 7):
%o A346278     tot = sum(pos)
%o A346278     keep[tot] += 1
%o A346278     rets = sorted([k for k, v in keep.items() if v == 1])
%o A346278     for x in range(len(rets)):
%o A346278         print(rets[x])
%Y A346278 Cf. A003352, A345823, A346279, A346326, A346356.
%K A346278 nonn
%O A346278 1,1
%A A346278 _David Consiglio, Jr._, Jul 13 2021