cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346280 Numbers that are the sum of seven fifth powers in exactly three ways.

This page as a plain text file.
%I A346280 #6 Jul 31 2021 19:11:53
%S A346280 84457,166997,324860,326199,358482,359327,391007,391999,408158,455146,
%T A346280 455749,486468,502429,572054,595519,614505,622280,648319,671210,
%U A346280 672022,696468,696499,696710,697491,699592,704243,713274,729235,755516,796467,857518,877645
%N A346280 Numbers that are the sum of seven fifth powers in exactly three ways.
%C A346280 Differs from A345606 at term 39 because 893604 = 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 10^5 + 15^5 = 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5.
%H A346280 Sean A. Irvine, <a href="/A346280/b346280.txt">Table of n, a(n) for n = 1..10000</a>
%e A346280 84457 is a term because 84457 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 9^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 8^5.
%o A346280 (Python)
%o A346280 from itertools import combinations_with_replacement as cwr
%o A346280 from collections import defaultdict
%o A346280 keep = defaultdict(lambda: 0)
%o A346280 power_terms = [x**5 for x in range(1, 1000)]
%o A346280 for pos in cwr(power_terms, 7):
%o A346280     tot = sum(pos)
%o A346280     keep[tot] += 1
%o A346280     rets = sorted([k for k, v in keep.items() if v == 3])
%o A346280     for x in range(len(rets)):
%o A346280         print(rets[x])
%Y A346280 Cf. A345606, A345825, A346279, A346281, A346328, A346358.
%K A346280 nonn
%O A346280 1,1
%A A346280 _David Consiglio, Jr._, Jul 13 2021