cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346281 Numbers that are the sum of seven fifth powers in exactly four ways.

This page as a plain text file.
%I A346281 #6 Jul 31 2021 19:11:56
%S A346281 893604,1117071,1182534,1414559,1629244,1933328,2280543,2586035,
%T A346281 2867074,3050644,3055295,3055977,3256432,3329360,3369543,3436058,
%U A346281 3551890,3576363,3896969,3914877,3930849,4055954,4087746,4088690,4093572,4096665,4098161,4104068,4104310
%N A346281 Numbers that are the sum of seven fifth powers in exactly four ways.
%C A346281 Differs from A345607 at term 92 because 6768576 = 4^5 + 6^5 + 6^5 + 6^5 + 9^5 + 12^5 + 23^5 = 1^5 + 3^5 + 4^5 + 8^5 + 11^5 + 17^5 + 22^5 = 6^5 + 12^5 + 13^5 + 14^5 + 15^5 + 15^5 + 21^5 = 8^5 + 10^5 + 12^5 + 12^5 + 16^5 + 18^5 + 20^5 = 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 18^5 + 20^5.
%H A346281 Sean A. Irvine, <a href="/A346281/b346281.txt">Table of n, a(n) for n = 1..10000</a>
%e A346281 893604 is a term because 893604 = 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 10^5 + 15^5 = 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5.
%o A346281 (Python)
%o A346281 from itertools import combinations_with_replacement as cwr
%o A346281 from collections import defaultdict
%o A346281 keep = defaultdict(lambda: 0)
%o A346281 power_terms = [x**5 for x in range(1, 1000)]
%o A346281 for pos in cwr(power_terms, 7):
%o A346281     tot = sum(pos)
%o A346281     keep[tot] += 1
%o A346281     rets = sorted([k for k, v in keep.items() if v == 4])
%o A346281     for x in range(len(rets)):
%o A346281         print(rets[x])
%Y A346281 Cf. A345607, A345826, A346280, A346282, A346329, A346359.
%K A346281 nonn
%O A346281 1,1
%A A346281 _David Consiglio, Jr._, Jul 13 2021