cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346285 Numbers that are the sum of seven fifth powers in exactly eight ways.

This page as a plain text file.
%I A346285 #6 Jul 31 2021 19:12:12
%S A346285 36620574,80552143,81401376,82078424,92347417,93653176,94486699,
%T A346285 94626949,98873875,105674625,121050874,125959393,129228307,144209018,
%U A346285 145340799,147245218,147898763,151727082,151923168,152361276,152664876,153877208,155107349,155270357
%N A346285 Numbers that are the sum of seven fifth powers in exactly eight ways.
%C A346285 Differs from A345630 at term 11 because 110276376 = 1^5 + 3^5 + 5^5 + 7^5 + 17^5 + 23^5 + 40^5 = 5^5 + 10^5 + 16^5 + 16^5 + 19^5 + 20^5 + 40^5 = 1^5 + 8^5 + 14^5 + 16^5 + 21^5 + 27^5 + 39^5 = 7^5 + 8^5 + 11^5 + 14^5 + 16^5 + 33^5 + 37^5 = 4^5 + 7^5 + 8^5 + 13^5 + 26^5 + 31^5 + 37^5 = 1^5 + 5^5 + 6^5 + 20^5 + 28^5 + 29^5 + 37^5 = 3^5 + 3^5 + 7^5 + 18^5 + 27^5 + 32^5 + 36^5 = 6^5 + 12^5 + 18^5 + 25^5 + 30^5 + 31^5 + 34^5 = 6^5 + 10^5 + 20^5 + 27^5 + 27^5 + 33^5 + 33^5.
%H A346285 Sean A. Irvine, <a href="/A346285/b346285.txt">Table of n, a(n) for n = 1..10000</a>
%e A346285 36620574 is a term because 36620574 = 4^5 + 9^5 + 14^5 + 17^5 + 18^5 + 21^5 + 31^5 = 1^5 + 12^5 + 13^5 + 14^5 + 20^5 + 24^5 + 30^5 = 8^5 + 9^5 + 12^5 + 13^5 + 16^5 + 27^5 + 29^5 = 5^5 + 7^5 + 7^5 + 20^5 + 23^5 + 23^5 + 29^5 = 17^5 + 18^5 + 20^5 + 20^5 + 20^5 + 20^5 + 29^5 = 2^5 + 7^5 + 14^5 + 14^5 + 23^5 + 26^5 + 28^5 = 4^5 + 8^5 + 8^5 + 17^5 + 23^5 + 27^5 + 27^5 = 2^5 + 3^5 + 14^5 + 18^5 + 24^5 + 26^5 + 27^5.
%o A346285 (Python)
%o A346285 from itertools import combinations_with_replacement as cwr
%o A346285 from collections import defaultdict
%o A346285 keep = defaultdict(lambda: 0)
%o A346285 power_terms = [x**5 for x in range(1, 1000)]
%o A346285 for pos in cwr(power_terms, 7):
%o A346285     tot = sum(pos)
%o A346285     keep[tot] += 1
%o A346285     rets = sorted([k for k, v in keep.items() if v == 8])
%o A346285     for x in range(len(rets)):
%o A346285         print(rets[x])
%Y A346285 Cf. A345630, A345830, A346284, A346286, A346333, A346363.
%K A346285 nonn
%O A346285 1,1
%A A346285 _David Consiglio, Jr._, Jul 12 2021