cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346286 Numbers that are the sum of seven fifth powers in exactly nine ways.

This page as a plain text file.
%I A346286 #6 Jul 31 2021 19:12:15
%S A346286 110276376,124732805,127808693,130298618,188116743,202274051,
%T A346286 202686274,203343582,230909843,233137574,233549568,234250752,
%U A346286 244250335,251138524,253480833,254017026,254380543,265006057,265072501,273628068,279536432,279770326,280361082
%N A346286 Numbers that are the sum of seven fifth powers in exactly nine ways.
%C A346286 Differs from A345631 at term 5 because 134581976 = 1^5 + 14^5 + 17^5 + 18^5 + 26^5 + 31^5 + 39^5 = 1^5 + 1^5 + 10^5 + 12^5 + 19^5 + 35^5 + 38^5 = 8^5 + 11^5 + 12^5 + 17^5 + 27^5 + 33^5 + 38^5 = 3^5 + 12^5 + 12^5 + 21^5 + 28^5 + 32^5 + 38^5 = 4^5 + 11^5 + 13^5 + 22^5 + 24^5 + 36^5 + 36^5 = 5^5 + 6^5 + 19^5 + 20^5 + 24^5 + 36^5 + 36^5 = 1^5 + 4^5 + 21^5 + 21^5 + 29^5 + 34^5 + 36^5 = 1^5 + 8^5 + 14^5 + 23^5 + 32^5 + 32^5 + 36^5 = 6^5 + 25^5 + 25^5 + 25^5 + 29^5 + 30^5 + 36^5 = 12^5 + 20^5 + 21^5 + 26^5 + 28^5 + 34^5 + 35^5.
%H A346286 Sean A. Irvine, <a href="/A346286/b346286.txt">Table of n, a(n) for n = 1..10000</a>
%e A346286 110276376 is a term because 110276376 = 1^5 + 3^5 + 5^5 + 7^5 + 17^5 + 23^5 + 40^5 = 5^5 + 10^5 + 16^5 + 16^5 + 19^5 + 20^5 + 40^5 = 1^5 + 8^5 + 14^5 + 16^5 + 21^5 + 27^5 + 39^5 = 7^5 + 8^5 + 11^5 + 14^5 + 16^5 + 33^5 + 37^5 = 4^5 + 7^5 + 8^5 + 13^5 + 26^5 + 31^5 + 37^5 = 1^5 + 5^5 + 6^5 + 20^5 + 28^5 + 29^5 + 37^5 = 3^5 + 3^5 + 7^5 + 18^5 + 27^5 + 32^5 + 36^5 = 6^5 + 12^5 + 18^5 + 25^5 + 30^5 + 31^5 + 34^5 = 6^5 + 10^5 + 20^5 + 27^5 + 27^5 + 33^5 + 33^5.
%o A346286 (Python)
%o A346286 from itertools import combinations_with_replacement as cwr
%o A346286 from collections import defaultdict
%o A346286 keep = defaultdict(lambda: 0)
%o A346286 power_terms = [x**5 for x in range(1, 1000)]
%o A346286 for pos in cwr(power_terms, 7):
%o A346286     tot = sum(pos)
%o A346286     keep[tot] += 1
%o A346286     rets = sorted([k for k, v in keep.items() if v == 9])
%o A346286     for x in range(len(rets)):
%o A346286         print(rets[x])
%Y A346286 Cf. A345631, A345831, A346259, A346285, A346334, A346364.
%K A346286 nonn
%O A346286 1,1
%A A346286 _David Consiglio, Jr._, Jul 12 2021