This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346287 #6 Jul 13 2021 09:20:04 %S A346287 1,11,13,19,131,5851,416833471 %N A346287 Numbers that are of both forms x^k+x+1 and x^k-(x+1) with k>=2 and x>=0. %e A346287 1 = 2^2-(2+1) = 0^2+(0+1) %e A346287 11 = 4^2-(4+1) = 2^3+(2+1) %e A346287 13 = 2^4-(2+1) = 3^2+(3+1) %e A346287 19 = 5^2-(5+1) = 2^4+(2+1) %e A346287 131 = 12^2-(12+1) = 5^3+(5+1) %e A346287 5851 = 77^2-(77+1) = 18^3+(18+1) %e A346287 416833471 = 20417^2-(20417+1) = 747^3+(747+1) %p A346287 N:= 10^11: # for terms <= N %p A346287 R:= {3}: %p A346287 for k from 2 to ilog2(N-1) do %p A346287 R:= R union {seq(x^k+x+1,x=2..floor(N^(1/k)))} %p A346287 od: %p A346287 A:= {1}: %p A346287 for k from 2 to ilog2(N+3) do %p A346287 for x from 2 do %p A346287 r:= x^k-(x+1); %p A346287 if r > N then break fi; %p A346287 if member(r,R) then A:= A union {r} fi %p A346287 od od: %p A346287 sort(convert(A,list)); %Y A346287 Cf. A253913. %K A346287 nonn,more %O A346287 1,2 %A A346287 _J. M. Bergot_ and _Robert Israel_, Jul 12 2021