cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346289 Decimal expansion of the length of first, and largest, gap between nontrivial zeta zeros.

This page as a plain text file.
%I A346289 #11 Jul 16 2021 05:22:04
%S A346289 6,8,8,7,3,1,4,4,9,7,0,3,6,8,6,1,2,0,2,1,7,1,2,2,7,6,1,0,3,3,4,4,3,2,
%T A346289 5,0,6,5,5,0,0,8,3,4,0,9,2,0,3,5,3,8,5,7,8,9,4,3,9,5,2,9,4,3,4,3,7,6,
%U A346289 3,5,1,5,6,2,5,9,6,3,4,0,3,4,7,6,4,6,4
%N A346289 Decimal expansion of the length of first, and largest, gap between nontrivial zeta zeros.
%C A346289 Simonič shows that this gap is in fact larger than all other gaps between zeros of the Riemann zeta function, see the proof of Lemma 3.
%H A346289 Aleksander Simonič, <a href="https://arxiv.org/abs/1612.08627">Lehmer pairs and derivatives of Hardy's Z-function</a>, arXiv:1612.08627 [math.NT], 2016-2017.
%H A346289 <a href="/index/Z#zeta_function">Index entries for zeta function</a>.
%F A346289 Equals A065434 - A058303.
%e A346289 6.8873144970368612021712276103344325065500834092035385789439529434376351562596....
%t A346289 Im[ZetaZero[2] - ZetaZero[1]] // RealDigits[#, 10, 88]& // First (* _Peter Luschny_, Jul 16 2021 *)
%o A346289 (PARI) call((x,y)->y-x,lfunzeros(1,22))
%Y A346289 Cf. A065434, A058303.
%K A346289 nonn,cons
%O A346289 1,1
%A A346289 _Charles R Greathouse IV_, Jul 13 2021