This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346290 #17 Aug 21 2021 22:37:49 %S A346290 24,26,28,36,39,42,46,48,62,63,64,68,69,82,84,86,93,96,132,143,144, %T A346290 154,156,165,168,169,176,187,198,204,206,208,224,226,228,231,244,246, %U A346290 248,252,253,264,266,268,273,275,276,284,286,288,294,297,299,306,309 %N A346290 Numbers k = s * t such that reverse(k) = reverse(s) * reverse(t) where reverse(k) is k with its digits reversed. A single-digit number is its own reversal and neither s nor t has a leading zero. No pair (s, t) has both s and t palindromic or single-digit. %C A346290 This sequence looks like A346133 but reversed products are here included. %e A346290 a(1) = 24 = 2 * 12 and 2 * 21 = 42 (which is 24 reversed); %e A346290 a(2) = 26 = 2 * 13 and 2 * 31 = 62 (which is 26 reversed); %e A346290 a(3) = 28 = 2 * 14 and 2 * 41 = 82 (which is 28 reversed); %e A346290 a(4) = 36 = 3 * 12 and 3 * 21 = 63 (which is 36 reversed); etc. %t A346290 q[n_] := AnyTrue[Rest @ Take[(d = Divisors[n]), Ceiling[Length[d]/2]], (# > 9 || n/# > 9) && !Divisible[#, 10] && !Divisible[n/#, 10] && (!PalindromeQ[#] || !PalindromeQ[n/#]) && IntegerReverse[#] * IntegerReverse[n/#] == IntegerReverse[n] &]; Select[Range[2, 300], q] (* _Amiram Eldar_, Jul 13 2021 *) %o A346290 (Python) %o A346290 from sympy import divisors %o A346290 def rev(n): return int(str(n)[::-1]) %o A346290 def ok(n): %o A346290 divs = divisors(n) %o A346290 for a in divs[1:(len(divs)+1)//2]: %o A346290 b = n // a %o A346290 reva, revb, revn = rev(a), rev(b), rev(n) %o A346290 if a%10 == 0 or b%10 == 0: continue %o A346290 if (reva != a or revb != b) and revn == reva * revb: return True %o A346290 return False %o A346290 print(list(filter(ok, range(310)))) # _Michael S. Branicky_, Jul 13 2021 %Y A346290 Cf. A066531, A346133. %K A346290 nonn,base %O A346290 1,1 %A A346290 _Eric Angelini_ and _Carole Dubois_, Jul 13 2021