This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346308 #22 Aug 06 2022 19:06:30 %S A346308 1,5,8,12,15,19,22,24,25,29,31,32,36,38,39,41,43,45,46,48,50,53,55,57, %T A346308 60,62,65,67,69,72,74,76,77,79,83,84,86,90,91,93,96,98,100,103,107, %U A346308 110,114,117,121,124,128,131,135,138,140,142,145,147,148,152,154 %N A346308 Intersection of Beatty sequences for sqrt(2) and sqrt(3). %C A346308 Let d(n) = a(n) - A022840(n). Conjecture: (d(n)) is unbounded below and above, and d(n) = 0 for infinitely many n. %C A346308 From _Clark Kimberling_, Jul 26 2022: (Start) %C A346308 This is the first of four sequences that partition the positive integers. Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite: %C A346308 (1) u ^ v = intersection of u and v (in increasing order); %C A346308 (2) u ^ v'; %C A346308 (3) u' ^ v; %C A346308 (4) u' ^ v'. %C A346308 Every positive integer is in exactly one of the four sequences. For A346308, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*sqrt(2)) and v(n) = floor(n*sqrt(3)), so that r = sqrt(2), s = sqrt(3), r' = 2 + sqrt(2), s' = (3 + sqrt(3))/2. (See A356052.) %C A346308 (End) %F A346308 In general, if r and s are irrational numbers greater than 1, and a(n) is the n-th term of the intersection (assumed nonempty) of the Beatty sequences for r and s, then a(n) = floor(r*ceiling(a(n)/r)) = floor(s*ceiling(a(n)/s)). %e A346308 Beatty sequence for sqrt(2): (1,2,4,5,7,8,9,11,12,14,...). %e A346308 Beatty sequence for sqrt(3): (1,3,5,6,8,10,12,13,15,...). %e A346308 a(n) = (1,5,8,12,...). %e A346308 In the notation in Comments: %e A346308 (1) u ^ v = (1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308. %e A346308 (2) u ^ v' = (2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, 35, ...) = A356085. %e A346308 (3) u' ^ v = (3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, 81, ...) = A356086. %e A346308 (4) u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087. %t A346308 z = 200; %t A346308 r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *) %t A346308 u1 = Take[Complement[Range[1000], u], z] (* A001952 *) %t A346308 r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}] (* A022838 *) %t A346308 v1 = Take[Complement[Range[1000], v], z] (* A054406 *) %t A346308 t1 = Intersection[u, v] (* A346308 *) %t A346308 t2 = Intersection[u, v1] (* A356085 *) %t A346308 t3 = Intersection[u1, v] (* A356086 *) %t A346308 t4 = Intersection[u1, v1] (* A356087 *) %o A346308 (Python) %o A346308 from math import isqrt %o A346308 from itertools import count, islice %o A346308 def A346308_gen(): # generator of terms %o A346308 return filter(lambda n:n == isqrt(3*(isqrt(n**2//3)+1)**2),(isqrt(n*n<<1) for n in count(1))) %o A346308 A346308_list = list(islice(A346308_gen(),30)) # _Chai Wah Wu_, Aug 06 2022 %Y A346308 Intersection of A001951 and A022838. %Y A346308 Cf. A346308, A347467, A347468, A347469. %Y A346308 Cf. A001952, A022838, A054406, A356085, A356086, A356087, A356088 (composites instead of intersections). %K A346308 nonn %O A346308 1,2 %A A346308 _Clark Kimberling_, Sep 11 2021