This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346326 #7 Jul 31 2021 19:03:38 %S A346326 8,39,70,101,132,163,194,225,250,256,281,312,343,374,405,436,467,492, %T A346326 523,554,585,616,647,678,734,765,796,827,858,889,976,1007,1031,1038, %U A346326 1062,1069,1093,1100,1124,1155,1186,1217,1218,1248,1249,1273,1280,1304,1311 %N A346326 Numbers that are the sum of eight fifth powers in exactly one way. %C A346326 Differs from A003353 at term 156 because 4100 = 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5. %H A346326 Sean A. Irvine, <a href="/A346326/b346326.txt">Table of n, a(n) for n = 1..10000</a> %e A346326 8 is a term because 8 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5. %o A346326 (Python) %o A346326 from itertools import combinations_with_replacement as cwr %o A346326 from collections import defaultdict %o A346326 keep = defaultdict(lambda: 0) %o A346326 power_terms = [x**5 for x in range(1, 1000)] %o A346326 for pos in cwr(power_terms, 8): %o A346326 tot = sum(pos) %o A346326 keep[tot] += 1 %o A346326 rets = sorted([k for k, v in keep.items() if v == 1]) %o A346326 for x in range(len(rets)): %o A346326 print(rets[x]) %Y A346326 Cf. A003353, A345833, A346278, A346327, A346336. %K A346326 nonn %O A346326 1,1 %A A346326 _David Consiglio, Jr._, Jul 13 2021