cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346326 Numbers that are the sum of eight fifth powers in exactly one way.

This page as a plain text file.
%I A346326 #7 Jul 31 2021 19:03:38
%S A346326 8,39,70,101,132,163,194,225,250,256,281,312,343,374,405,436,467,492,
%T A346326 523,554,585,616,647,678,734,765,796,827,858,889,976,1007,1031,1038,
%U A346326 1062,1069,1093,1100,1124,1155,1186,1217,1218,1248,1249,1273,1280,1304,1311
%N A346326 Numbers that are the sum of eight fifth powers in exactly one way.
%C A346326 Differs from A003353 at term 156 because 4100 = 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
%H A346326 Sean A. Irvine, <a href="/A346326/b346326.txt">Table of n, a(n) for n = 1..10000</a>
%e A346326 8 is a term because 8 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
%o A346326 (Python)
%o A346326 from itertools import combinations_with_replacement as cwr
%o A346326 from collections import defaultdict
%o A346326 keep = defaultdict(lambda: 0)
%o A346326 power_terms = [x**5 for x in range(1, 1000)]
%o A346326 for pos in cwr(power_terms, 8):
%o A346326     tot = sum(pos)
%o A346326     keep[tot] += 1
%o A346326     rets = sorted([k for k, v in keep.items() if v == 1])
%o A346326     for x in range(len(rets)):
%o A346326         print(rets[x])
%Y A346326 Cf. A003353, A345833, A346278, A346327, A346336.
%K A346326 nonn
%O A346326 1,1
%A A346326 _David Consiglio, Jr._, Jul 13 2021