cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346327 Numbers that are the sum of eight fifth powers in exactly two ways.

This page as a plain text file.
%I A346327 #6 Jul 31 2021 19:03:41
%S A346327 4100,4131,4162,4193,4342,4373,4404,4584,4615,4826,5123,5154,5185,
%T A346327 5365,5396,5607,6146,6177,6388,7169,7224,7255,7286,7466,7497,7708,
%U A346327 8247,8278,8489,9270,10348,10379,10590,11371,11875,11906,11937,12117,12148,12359,12898
%N A346327 Numbers that are the sum of eight fifth powers in exactly two ways.
%C A346327 Differs from A345610 at term 128 because 52417 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5.
%H A346327 Sean A. Irvine, <a href="/A346327/b346327.txt">Table of n, a(n) for n = 1..10000</a>
%e A346327 4100 is a term because 4100 = 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
%o A346327 (Python)
%o A346327 from itertools import combinations_with_replacement as cwr
%o A346327 from collections import defaultdict
%o A346327 keep = defaultdict(lambda: 0)
%o A346327 power_terms = [x**5 for x in range(1, 1000)]
%o A346327 for pos in cwr(power_terms, 8):
%o A346327     tot = sum(pos)
%o A346327     keep[tot] += 1
%o A346327     rets = sorted([k for k, v in keep.items() if v == 2])
%o A346327     for x in range(len(rets)):
%o A346327         print(rets[x])
%Y A346327 Cf. A345610, A345834, A346279, A346326, A346328, A346337.
%K A346327 nonn
%O A346327 1,1
%A A346327 _David Consiglio, Jr._, Jul 13 2021