cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346328 Numbers that are the sum of eight fifth powers in exactly three ways.

This page as a plain text file.
%I A346328 #6 Jul 31 2021 19:03:45
%S A346328 52417,54518,69634,70954,84458,84489,84700,85481,87582,92233,101264,
%T A346328 102890,112574,117225,119326,134473,143264,143442,143506,149781,
%U A346328 151448,158719,159465,165634,166998,167029,167196,167240,168021,170122,174773,183804,184457
%N A346328 Numbers that are the sum of eight fifth powers in exactly three ways.
%C A346328 Differs from A345611 at term 105 because 391250 = 2^5 + 3^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5 = 1^5 + 1^5 + 4^5 + 7^5 + 8^5 + 8^5 + 9^5 + 12^5 = 2^5 + 3^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 1^5 + 3^5 + 3^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5.
%H A346328 Sean A. Irvine, <a href="/A346328/b346328.txt">Table of n, a(n) for n = 1..10000</a>
%e A346328 52417 is a term because 52417 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5.
%o A346328 (Python)
%o A346328 from itertools import combinations_with_replacement as cwr
%o A346328 from collections import defaultdict
%o A346328 keep = defaultdict(lambda: 0)
%o A346328 power_terms = [x**5 for x in range(1, 1000)]
%o A346328 for pos in cwr(power_terms, 8):
%o A346328     tot = sum(pos)
%o A346328     keep[tot] += 1
%o A346328     rets = sorted([k for k, v in keep.items() if v == 3])
%o A346328     for x in range(len(rets)):
%o A346328         print(rets[x])
%Y A346328 Cf. A345611, A345835, A346280, A346327, A346329, A346338.
%K A346328 nonn
%O A346328 1,1
%A A346328 _David Consiglio, Jr._, Jul 13 2021