This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346329 #7 Jul 31 2021 19:03:48 %S A346329 391250,392031,455750,519236,604822,622281,672023,672054,672265, %T A346329 673554,697492,703978,707368,730259,763292,857761,893605,893636, %U A346329 893816,893847,894027,894058,894452,894628,896729,897151,901380,903839,909124,909597,910411,911403 %N A346329 Numbers that are the sum of eight fifth powers in exactly four ways. %C A346329 Differs from A345612 at term 33 because 926372 = 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 10^5 + 15^5 = 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 10^5 + 15^5 = 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 6^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5. %H A346329 Sean A. Irvine, <a href="/A346329/b346329.txt">Table of n, a(n) for n = 1..10000</a> %e A346329 391250 is a term because 391250 = 2^5 + 3^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5 = 1^5 + 1^5 + 4^5 + 7^5 + 8^5 + 8^5 + 9^5 + 12^5 = 2^5 + 3^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 1^5 + 3^5 + 3^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5. %o A346329 (Python) %o A346329 from itertools import combinations_with_replacement as cwr %o A346329 from collections import defaultdict %o A346329 keep = defaultdict(lambda: 0) %o A346329 power_terms = [x**5 for x in range(1, 1000)] %o A346329 for pos in cwr(power_terms, 8): %o A346329 tot = sum(pos) %o A346329 keep[tot] += 1 %o A346329 rets = sorted([k for k, v in keep.items() if v == 4]) %o A346329 for x in range(len(rets)): %o A346329 print(rets[x]) %Y A346329 Cf. A345612, A345836, A346281, A346328, A346330, A346339. %K A346329 nonn %O A346329 1,1 %A A346329 _David Consiglio, Jr._, Jul 13 2021