cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346329 Numbers that are the sum of eight fifth powers in exactly four ways.

This page as a plain text file.
%I A346329 #7 Jul 31 2021 19:03:48
%S A346329 391250,392031,455750,519236,604822,622281,672023,672054,672265,
%T A346329 673554,697492,703978,707368,730259,763292,857761,893605,893636,
%U A346329 893816,893847,894027,894058,894452,894628,896729,897151,901380,903839,909124,909597,910411,911403
%N A346329 Numbers that are the sum of eight fifth powers in exactly four ways.
%C A346329 Differs from A345612 at term 33 because 926372 = 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 10^5 + 15^5 = 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 10^5 + 15^5 = 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 6^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5.
%H A346329 Sean A. Irvine, <a href="/A346329/b346329.txt">Table of n, a(n) for n = 1..10000</a>
%e A346329 391250 is a term because 391250 = 2^5 + 3^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5 = 1^5 + 1^5 + 4^5 + 7^5 + 8^5 + 8^5 + 9^5 + 12^5 = 2^5 + 3^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 1^5 + 3^5 + 3^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5.
%o A346329 (Python)
%o A346329 from itertools import combinations_with_replacement as cwr
%o A346329 from collections import defaultdict
%o A346329 keep = defaultdict(lambda: 0)
%o A346329 power_terms = [x**5 for x in range(1, 1000)]
%o A346329 for pos in cwr(power_terms, 8):
%o A346329     tot = sum(pos)
%o A346329     keep[tot] += 1
%o A346329     rets = sorted([k for k, v in keep.items() if v == 4])
%o A346329     for x in range(len(rets)):
%o A346329         print(rets[x])
%Y A346329 Cf. A345612, A345836, A346281, A346328, A346330, A346339.
%K A346329 nonn
%O A346329 1,1
%A A346329 _David Consiglio, Jr._, Jul 13 2021