This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346330 #6 Jul 31 2021 19:03:52 %S A346330 926372,952653,993573,1133343,1414591,1431366,1447327,1597928,1637020, %T A346330 1663391,1697685,1876624,1933329,1992377,1993376,1993666,2033328, %U A346330 2091879,2175912,2182160,2231110,2280544,2280575,2280786,2281567,2283668,2329602,2345563,2388619 %N A346330 Numbers that are the sum of eight fifth powers in exactly five ways. %C A346330 Differs from A345613 at term 7 because 1431397 = 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5. %H A346330 Sean A. Irvine, <a href="/A346330/b346330.txt">Table of n, a(n) for n = 1..10000</a> %e A346330 926372 is a term because 926372 = 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 10^5 + 15^5 = 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 10^5 + 15^5 = 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 6^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5. %o A346330 (Python) %o A346330 from itertools import combinations_with_replacement as cwr %o A346330 from collections import defaultdict %o A346330 keep = defaultdict(lambda: 0) %o A346330 power_terms = [x**5 for x in range(1, 1000)] %o A346330 for pos in cwr(power_terms, 8): %o A346330 tot = sum(pos) %o A346330 keep[tot] += 1 %o A346330 rets = sorted([k for k, v in keep.items() if v == 5]) %o A346330 for x in range(len(rets)): %o A346330 print(rets[x]) %Y A346330 Cf. A345613, A345837, A346282, A346329, A346331, A346340. %K A346330 nonn %O A346330 1,1 %A A346330 _David Consiglio, Jr._, Jul 13 2021