cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346332 Numbers that are the sum of eight fifth powers in exactly seven ways.

This page as a plain text file.
%I A346332 #6 Jul 31 2021 19:03:59
%S A346332 4104553,4915506,6011150,6027989,6323394,6563733,6622231,6776363,
%T A346332 6785394,7982834,8181481,8288806,8658144,8710484,8773477,8932244,
%U A346332 8996669,9252219,9253706,9311478,9904983,9976120,10045233,10053008,10193511,10359767,10514944,10541225
%N A346332 Numbers that are the sum of eight fifth powers in exactly seven ways.
%C A346332 Differs from A345615 at term 13 because 8625619 = 2^5 + 5^5 + 5^5 + 9^5 + 10^5 + 12^5 + 12^5 + 24^5 = 1^5 + 3^5 + 8^5 + 9^5 + 11^5 + 11^5 + 12^5 + 24^5 = 2^5 + 2^5 + 3^5 + 8^5 + 9^5 + 16^5 + 16^5 + 23^5 = 1^5 + 3^5 + 3^5 + 4^5 + 11^5 + 17^5 + 18^5 + 22^5 = 4^5 + 11^5 + 13^5 + 13^5 + 15^5 + 15^5 + 16^5 + 22^5 = 5^5 + 6^5 + 13^5 + 15^5 + 15^5 + 16^5 + 19^5 + 20^5 = 3^5 + 10^5 + 12^5 + 12^5 + 16^5 + 18^5 + 18^5 + 20^5 = 3^5 + 8^5 + 14^5 + 14^5 + 14^5 + 18^5 + 18^5 + 20^5.
%H A346332 Sean A. Irvine, <a href="/A346332/b346332.txt">Table of n, a(n) for n = 1..10000</a>
%e A346332 4104553 is a term because 4104553 = 1^5 + 1^5 + 2^5 + 3^5 + 3^5 + 5^5 + 7^5 + 21^5 = 3^5 + 3^5 + 4^5 + 6^5 + 8^5 + 14^5 + 16^5 + 19^5 = 3^5 + 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 18^5 + 18^5 = 3^5 + 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 18^5 + 18^5 = 1^5 + 1^5 + 4^5 + 7^5 + 10^5 + 16^5 + 16^5 + 18^5 = 7^5 + 11^5 + 11^5 + 13^5 + 14^5 + 15^5 + 16^5 + 16^5 = 6^5 + 12^5 + 12^5 + 13^5 + 13^5 + 15^5 + 16^5 + 16^5.
%o A346332 (Python)
%o A346332 from itertools import combinations_with_replacement as cwr
%o A346332 from collections import defaultdict
%o A346332 keep = defaultdict(lambda: 0)
%o A346332 power_terms = [x**5 for x in range(1, 1000)]
%o A346332 for pos in cwr(power_terms, 8):
%o A346332     tot = sum(pos)
%o A346332     keep[tot] += 1
%o A346332     rets = sorted([k for k, v in keep.items() if v == 7])
%o A346332     for x in range(len(rets)):
%o A346332         print(rets[x])
%Y A346332 Cf. A345615, A345839, A346284, A346331, A346333, A346342.
%K A346332 nonn
%O A346332 1,1
%A A346332 _David Consiglio, Jr._, Jul 13 2021