cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346334 Numbers that are the sum of eight fifth powers in exactly nine ways.

This page as a plain text file.
%I A346334 #6 Jul 31 2021 19:04:08
%S A346334 8742208,18913169,19987308,20135313,21505583,21512966,21563089,
%T A346334 21727552,22237510,22256608,22438990,22545600,22686818,23106589,
%U A346334 23122550,23189782,23221517,23287858,23346048,23477344,23798742,23847285,23931325,24138358,24385108,24394139
%N A346334 Numbers that are the sum of eight fifth powers in exactly nine ways.
%C A346334 Differs from A345617 at term 2 because 15539667 = 1^5 + 7^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 27^5 = 1^5 + 4^5 + 7^5 + 9^5 + 13^5 + 13^5 + 13^5 + 27^5 = 1^5 + 1^5 + 7^5 + 7^5 + 10^5 + 16^5 + 19^5 + 26^5 = 1^5 + 1^5 + 2^5 + 10^5 + 12^5 + 17^5 + 18^5 + 26^5 = 2^5 + 2^5 + 3^5 + 8^5 + 9^5 + 16^5 + 23^5 + 24^5 = 4^5 + 11^5 + 13^5 + 13^5 + 15^5 + 15^5 + 22^5 + 24^5 = 5^5 + 6^5 + 13^5 + 15^5 + 15^5 + 19^5 + 20^5 + 24^5 = 3^5 + 10^5 + 12^5 + 12^5 + 18^5 + 18^5 + 20^5 + 24^5 = 6^5 + 9^5 + 11^5 + 11^5 + 15^5 + 21^5 + 22^5 + 22^5 = 3^5 + 5^5 + 10^5 + 19^5 + 19^5 + 20^5 + 20^5 + 21^5.
%H A346334 Sean A. Irvine, <a href="/A346334/b346334.txt">Table of n, a(n) for n = 1..10000</a>
%e A346334 8742208 is a term because 8742208 = 1^5 + 1^5 + 2^5 + 3^5 + 5^5 + 7^5 + 15^5 + 24^5 = 4^5 + 4^5 + 8^5 + 8^5 + 9^5 + 15^5 + 17^5 + 23^5 = 1^5 + 3^5 + 7^5 + 12^5 + 12^5 + 13^5 + 17^5 + 23^5 = 2^5 + 5^5 + 6^5 + 7^5 + 15^5 + 15^5 + 15^5 + 23^5 = 1^5 + 1^5 + 9^5 + 9^5 + 11^5 + 17^5 + 18^5 + 22^5 = 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 12^5 + 21^5 + 21^5 = 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 12^5 + 21^5 + 21^5 = 10^5 + 12^5 + 12^5 + 13^5 + 16^5 + 16^5 + 19^5 + 20^5 = 8^5 + 13^5 + 14^5 + 14^5 + 14^5 + 16^5 + 19^5 + 20^5.
%o A346334 (Python)
%o A346334 from itertools import combinations_with_replacement as cwr
%o A346334 from collections import defaultdict
%o A346334 keep = defaultdict(lambda: 0)
%o A346334 power_terms = [x**5 for x in range(1, 1000)]
%o A346334 for pos in cwr(power_terms, 8):
%o A346334     tot = sum(pos)
%o A346334     keep[tot] += 1
%o A346334     rets = sorted([k for k, v in keep.items() if v == 9])
%o A346334     for x in range(len(rets)):
%o A346334         print(rets[x])
%Y A346334 Cf. A345617, A345841, A346286, A346333, A346335, A346344.
%K A346334 nonn
%O A346334 1,1
%A A346334 _David Consiglio, Jr._, Jul 13 2021