cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346335 Numbers that are the sum of eight fifth powers in exactly ten ways.

This page as a plain text file.
%I A346335 #6 Jul 31 2021 19:04:12
%S A346335 15539667,22932525,24393600,24650406,24952961,24953742,25142513,
%T A346335 26001294,27988486,28609075,29309819,31794336,32223105,32527286,
%U A346335 32610600,32807777,32890541,32998317,33015125,33187858,33361339,33550572,33659175,33782597,34029369,34073650
%N A346335 Numbers that are the sum of eight fifth powers in exactly ten ways.
%C A346335 Differs from A345618 at term 7 because 25054306 = 1^5 + 1^5 + 2^5 + 6^5 + 12^5 + 12^5 + 12^5 + 30^5 = 5^5 + 6^5 + 6^5 + 12^5 + 14^5 + 14^5 + 20^5 + 29^5 = 4^5 + 5^5 + 8^5 + 11^5 + 11^5 + 16^5 + 23^5 + 28^5 = 4^5 + 5^5 + 5^5 + 7^5 + 17^5 + 20^5 + 20^5 + 28^5 = 2^5 + 6^5 + 9^5 + 9^5 + 9^5 + 21^5 + 23^5 + 27^5 = 1^5 + 4^5 + 4^5 + 9^5 + 19^5 + 21^5 + 21^5 + 27^5 = 3^5 + 5^5 + 6^5 + 13^5 + 13^5 + 14^5 + 26^5 + 26^5 = 1^5 + 3^5 + 10^5 + 10^5 + 10^5 + 23^5 + 23^5 + 26^5 = 9^5 + 10^5 + 14^5 + 17^5 + 17^5 + 20^5 + 23^5 + 26^5 = 7^5 + 12^5 + 15^5 + 15^5 + 19^5 + 19^5 + 23^5 + 26^5 = 3^5 + 4^5 + 4^5 + 7^5 + 17^5 + 21^5 + 25^5 + 25^5.
%H A346335 Sean A. Irvine, <a href="/A346335/b346335.txt">Table of n, a(n) for n = 1..8261</a>
%e A346335 15539667 is a term because 15539667 = 1^5 + 7^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 27^5 = 1^5 + 4^5 + 7^5 + 9^5 + 13^5 + 13^5 + 13^5 + 27^5 = 1^5 + 1^5 + 7^5 + 7^5 + 10^5 + 16^5 + 19^5 + 26^5 = 1^5 + 1^5 + 2^5 + 10^5 + 12^5 + 17^5 + 18^5 + 26^5 = 2^5 + 2^5 + 3^5 + 8^5 + 9^5 + 16^5 + 23^5 + 24^5 = 4^5 + 11^5 + 13^5 + 13^5 + 15^5 + 15^5 + 22^5 + 24^5 = 5^5 + 6^5 + 13^5 + 15^5 + 15^5 + 19^5 + 20^5 + 24^5 = 3^5 + 10^5 + 12^5 + 12^5 + 18^5 + 18^5 + 20^5 + 24^5 = 6^5 + 9^5 + 11^5 + 11^5 + 15^5 + 21^5 + 22^5 + 22^5 = 3^5 + 5^5 + 10^5 + 19^5 + 19^5 + 20^5 + 20^5 + 21^5.
%o A346335 (Python)
%o A346335 from itertools import combinations_with_replacement as cwr
%o A346335 from collections import defaultdict
%o A346335 keep = defaultdict(lambda: 0)
%o A346335 power_terms = [x**5 for x in range(1, 1000)]
%o A346335 for pos in cwr(power_terms, 8):
%o A346335     tot = sum(pos)
%o A346335     keep[tot] += 1
%o A346335     rets = sorted([k for k, v in keep.items() if v == 10])
%o A346335     for x in range(len(rets)):
%o A346335         print(rets[x])
%Y A346335 Cf. A345618, A345842, A346259, A346334, A346345.
%K A346335 nonn
%O A346335 1,1
%A A346335 _David Consiglio, Jr._, Jul 13 2021