cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346336 Numbers that are the sum of nine fifth powers in exactly one way.

This page as a plain text file.
%I A346336 #7 Jul 31 2021 19:00:43
%S A346336 9,40,71,102,133,164,195,226,251,257,282,288,313,344,375,406,437,468,
%T A346336 493,499,524,555,586,617,648,679,710,735,766,797,828,859,890,921,977,
%U A346336 1008,1032,1039,1063,1070,1094,1101,1125,1132,1156,1187,1218,1219,1249,1250
%N A346336 Numbers that are the sum of nine fifth powers in exactly one way.
%C A346336 Differs from A003354 at term 191 because 4101 = 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
%H A346336 Sean A. Irvine, <a href="/A346336/b346336.txt">Table of n, a(n) for n = 1..10000</a>
%e A346336 9 is a term because 9 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
%o A346336 (Python)
%o A346336 from itertools import combinations_with_replacement as cwr
%o A346336 from collections import defaultdict
%o A346336 keep = defaultdict(lambda: 0)
%o A346336 power_terms = [x**5 for x in range(1, 1000)]
%o A346336 for pos in cwr(power_terms, 9):
%o A346336     tot = sum(pos)
%o A346336     keep[tot] += 1
%o A346336     rets = sorted([k for k, v in keep.items() if v == 1])
%o A346336     for x in range(len(rets)):
%o A346336         print(rets[x])
%Y A346336 Cf. A003354, A345843, A346326, A346337, A346346.
%K A346336 nonn
%O A346336 1,1
%A A346336 _David Consiglio, Jr._, Jul 13 2021