This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346336 #7 Jul 31 2021 19:00:43 %S A346336 9,40,71,102,133,164,195,226,251,257,282,288,313,344,375,406,437,468, %T A346336 493,499,524,555,586,617,648,679,710,735,766,797,828,859,890,921,977, %U A346336 1008,1032,1039,1063,1070,1094,1101,1125,1132,1156,1187,1218,1219,1249,1250 %N A346336 Numbers that are the sum of nine fifth powers in exactly one way. %C A346336 Differs from A003354 at term 191 because 4101 = 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5. %H A346336 Sean A. Irvine, <a href="/A346336/b346336.txt">Table of n, a(n) for n = 1..10000</a> %e A346336 9 is a term because 9 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5. %o A346336 (Python) %o A346336 from itertools import combinations_with_replacement as cwr %o A346336 from collections import defaultdict %o A346336 keep = defaultdict(lambda: 0) %o A346336 power_terms = [x**5 for x in range(1, 1000)] %o A346336 for pos in cwr(power_terms, 9): %o A346336 tot = sum(pos) %o A346336 keep[tot] += 1 %o A346336 rets = sorted([k for k, v in keep.items() if v == 1]) %o A346336 for x in range(len(rets)): %o A346336 print(rets[x]) %Y A346336 Cf. A003354, A345843, A346326, A346337, A346346. %K A346336 nonn %O A346336 1,1 %A A346336 _David Consiglio, Jr._, Jul 13 2021