cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346337 Numbers that are the sum of nine fifth powers in exactly two ways.

This page as a plain text file.
%I A346337 #6 Jul 31 2021 19:00:47
%S A346337 4101,4132,4163,4194,4225,4343,4374,4405,4436,4585,4616,4647,4827,
%T A346337 4858,5069,5124,5155,5186,5217,5366,5397,5428,5608,5639,5850,6147,
%U A346337 6178,6209,6389,6420,6631,7170,7201,7225,7256,7287,7318,7412,7467,7498,7529,7709,7740
%N A346337 Numbers that are the sum of nine fifth powers in exactly two ways.
%C A346337 Differs from A345619 at term 306 because 52418 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5.
%H A346337 Sean A. Irvine, <a href="/A346337/b346337.txt">Table of n, a(n) for n = 1..10000</a>
%e A346337 4101 is a term because 4101 = 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
%o A346337 (Python)
%o A346337 from itertools import combinations_with_replacement as cwr
%o A346337 from collections import defaultdict
%o A346337 keep = defaultdict(lambda: 0)
%o A346337 power_terms = [x**5 for x in range(1, 1000)]
%o A346337 for pos in cwr(power_terms, 9):
%o A346337     tot = sum(pos)
%o A346337     keep[tot] += 1
%o A346337     rets = sorted([k for k, v in keep.items() if v == 2])
%o A346337     for x in range(len(rets)):
%o A346337         print(rets[x])
%Y A346337 Cf. A345619, A345844, A346327, A346336, A346338, A346347.
%K A346337 nonn
%O A346337 1,1
%A A346337 _David Consiglio, Jr._, Jul 13 2021