This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346337 #6 Jul 31 2021 19:00:47 %S A346337 4101,4132,4163,4194,4225,4343,4374,4405,4436,4585,4616,4647,4827, %T A346337 4858,5069,5124,5155,5186,5217,5366,5397,5428,5608,5639,5850,6147, %U A346337 6178,6209,6389,6420,6631,7170,7201,7225,7256,7287,7318,7412,7467,7498,7529,7709,7740 %N A346337 Numbers that are the sum of nine fifth powers in exactly two ways. %C A346337 Differs from A345619 at term 306 because 52418 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5. %H A346337 Sean A. Irvine, <a href="/A346337/b346337.txt">Table of n, a(n) for n = 1..10000</a> %e A346337 4101 is a term because 4101 = 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5. %o A346337 (Python) %o A346337 from itertools import combinations_with_replacement as cwr %o A346337 from collections import defaultdict %o A346337 keep = defaultdict(lambda: 0) %o A346337 power_terms = [x**5 for x in range(1, 1000)] %o A346337 for pos in cwr(power_terms, 9): %o A346337 tot = sum(pos) %o A346337 keep[tot] += 1 %o A346337 rets = sorted([k for k, v in keep.items() if v == 2]) %o A346337 for x in range(len(rets)): %o A346337 print(rets[x]) %Y A346337 Cf. A345619, A345844, A346327, A346336, A346338, A346347. %K A346337 nonn %O A346337 1,1 %A A346337 _David Consiglio, Jr._, Jul 13 2021