cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346338 Numbers that are the sum of nine fifth powers in exactly three ways.

This page as a plain text file.
%I A346338 #6 Jul 31 2021 19:00:50
%S A346338 52418,52449,52660,53441,54519,54550,54761,55690,57643,60193,62294,
%T A346338 69224,69635,69666,69877,70658,70955,70986,71197,71325,71978,72759,
%U A346338 73001,74079,76031,77410,78730,84162,84459,84490,84521,84701,84732,84943,85185,85482,85513
%N A346338 Numbers that are the sum of nine fifth powers in exactly three ways.
%C A346338 Differs from A345620 at term 8 because 55542 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 5^5 + 7^5 + 7^5 + 7^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5.
%H A346338 Sean A. Irvine, <a href="/A346338/b346338.txt">Table of n, a(n) for n = 1..10000</a>
%e A346338 52418 is a term because 52418 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5.
%o A346338 (Python)
%o A346338 from itertools import combinations_with_replacement as cwr
%o A346338 from collections import defaultdict
%o A346338 keep = defaultdict(lambda: 0)
%o A346338 power_terms = [x**5 for x in range(1, 1000)]
%o A346338 for pos in cwr(power_terms, 9):
%o A346338     tot = sum(pos)
%o A346338     keep[tot] += 1
%o A346338     rets = sorted([k for k, v in keep.items() if v == 3])
%o A346338     for x in range(len(rets)):
%o A346338         print(rets[x])
%Y A346338 Cf. A345620, A345845, A346328, A346337, A346339, A346348.
%K A346338 nonn
%O A346338 1,1
%A A346338 _David Consiglio, Jr._, Jul 13 2021