This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346338 #6 Jul 31 2021 19:00:50 %S A346338 52418,52449,52660,53441,54519,54550,54761,55690,57643,60193,62294, %T A346338 69224,69635,69666,69877,70658,70955,70986,71197,71325,71978,72759, %U A346338 73001,74079,76031,77410,78730,84162,84459,84490,84521,84701,84732,84943,85185,85482,85513 %N A346338 Numbers that are the sum of nine fifth powers in exactly three ways. %C A346338 Differs from A345620 at term 8 because 55542 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 5^5 + 7^5 + 7^5 + 7^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5. %H A346338 Sean A. Irvine, <a href="/A346338/b346338.txt">Table of n, a(n) for n = 1..10000</a> %e A346338 52418 is a term because 52418 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5. %o A346338 (Python) %o A346338 from itertools import combinations_with_replacement as cwr %o A346338 from collections import defaultdict %o A346338 keep = defaultdict(lambda: 0) %o A346338 power_terms = [x**5 for x in range(1, 1000)] %o A346338 for pos in cwr(power_terms, 9): %o A346338 tot = sum(pos) %o A346338 keep[tot] += 1 %o A346338 rets = sorted([k for k, v in keep.items() if v == 3]) %o A346338 for x in range(len(rets)): %o A346338 print(rets[x]) %Y A346338 Cf. A345620, A345845, A346328, A346337, A346339, A346348. %K A346338 nonn %O A346338 1,1 %A A346338 _David Consiglio, Jr._, Jul 13 2021